【题目】如图,把长为6,宽为3的矩形折成正三棱柱
,三棱柱的高度为3,矩形的对角线和三棱柱的侧棱
的交点记为E,F.
(1)求三棱柱
的体积;
(2)求三棱柱中异面直线
与
所成角的大小.
![]()
科目:高中数学 来源: 题型:
【题目】设椭圆
过点
,且直线
过
的左焦点.
![]()
(1)求
的方程;
(2)设
为
上的任一点,记动点
的轨迹为
,
与
轴的负半轴、
轴的正半轴分别交于点
,
的短轴端点关于直线
的对称点分别为
、
,当点
在直线
上运动时,求
的最小值;
(3)如图,直线
经过
的右焦点
,并交
于
两点,且
在直线
上的射影依次为
,当
绕
转动时,直线
与
是否相交于定点?若是,求出定点的坐标,否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面给出了根据我国2012年~2018年水果人均占有量
(单位:
)和年份代码
绘制的散点图和线性回归方程的残差图(2012年~2018年的年份代码
分别为1~7).
![]()
(1)根据散点图分析
与
之间的相关关系;
(2)根据散点图相应数据计算得
,求
关于
的线性回归方程;
(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果.(精确到0.01)
附:回归方程
中斜率和截距的最小二乘估计公式分别为:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定两个命题,p:对任意实数x都有x2+ax+1≥0恒成立;q:幂函数y=xa-1在(0,+∞)内单调递减;如果p与q中有且仅有一个为真命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的左、右焦点分别为
、
,以线段
为直径的圆与椭圆交于点
.
![]()
(1)求椭圆的方程;
(2)过
轴正半轴上一点
作斜率为
的直线
.
①若
与圆和椭圆都相切,求实数
的值;
②直线
在
轴左侧交圆于
、
两点,与椭圆交于点
、
(从上到下依次为
、
、
、
),且
,求实数
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列六个命题:
(1)若
,则函数
的图像关于
对称.
(2)函数
与
在区间
上都是增函数.
(3)
的反函数是![]()
(4)
无最大值也无最小值.
(5)
的周期为
.
(6)
有对称轴两条,对称中心三个.
则正确题个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、
后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( )
![]()
A. 互联网行业从业人员中
后占一半以上
B. 互联网行业中从事技术岗位的人数超过总人数的![]()
C. 互联网行业中从事运营岗位的人数
后比
前多
D. 互联网行业中从事运营岗位的人数
后比
后多
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列
的前
项和为
,且
.
(1)求数列
的通项公式
;
(2)设
,若对一切正整数
,不等式
恒成立,求实数
的取值范围;.
(3)是否存在正整数
,使得
。成等比数列?若存在,求出所有的
;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com