精英家教网 > 高中数学 > 题目详情
11.设等比数列{an}的前n项和为Sn,若S10:S5=1:2,则S15:S5=3:4.

分析 本题可由等比数列的性质,每连续五项的和是一个等比数列求解,由题设中的条件S10:S5=1:2,可得出(S10-S5):S5=-1:2,由此得每连续五项的和相等,由此规律易得所求的比值.

解答 解:∵等比数列{an}的前n项和为Sn,若S10:S5=1:2,
∴(S10-S5):S5=-1:2,
由等比数列的性质得(S15-S10):(S10-S5):S5=1:(-2):4,
∴S15:S5=3:4,
故答案为:3:4.

点评 本题考查等比数列的性质,解题的关键是熟练掌握等比数列的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年河北正定中学高二上月考一数学(文)试卷(解析版) 题型:解答题

已知为等比数列的前项和,,且成等差数列.

(1)求数列的通项公式及

(2)若,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆E的中心在原点,焦点在坐标轴上,且经过($\sqrt{2},-\frac{\sqrt{2}}{2}$)与(1,$\frac{\sqrt{3}}{2}$)两点.
(Ⅰ)求E的方程;
(Ⅱ)设直线l:y=kx+m(k≠0,m>0)与E交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求△OPQ面积的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=$\frac{1}{x}$+ax+b,a,b∈R.
(1)若函数y=f(x)-2是奇函数,且在(0,+∞)上的最小值为4,求函数f(x)的解析式;
(2)当a=1时,函数g(x)=2f(x)-x在[$\frac{1}{2}$,2]上有两个不同的零点,求实数b的最小值;
(3)设F(x)=|f(x)|,对任意的实数b,都存在实数x0∈[$\frac{1}{2}$,2],使得F(x)$≥\frac{1}{2}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,AC=BC=1,PA=$\sqrt{3}$,则该三棱锥外接球的表面积为5π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{OA}=(2,0),\overrightarrow{OC}=\overrightarrow{AB}=(0,1)$,其中O为坐标原点,动点M到定直线y=1的距离等于d,并且满足$\overrightarrow{OM}•\overrightarrow{AM}=k(\overrightarrow{CM}•\overrightarrow{BM}-{d^2}),k$为非负实数
(1)求动点M的轨迹C1的方程
(2)若将曲线C1向左平移一个单位得到曲线C2,试指出C2为何种类型的曲线;
(3)若0<k<1,F1、F2是(2)中曲线C2的两个焦点,当点P在C2上运动时,求∠F1PF2取得最大值时对应点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.向圆(x-1)2+(y+3)2=36内随机投掷一点,则该点落在直线3x-4y=0的左上方的概率为$\frac{1}{3}$-$\frac{\sqrt{3}}{4π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.
(1)求证:AE⊥BE;
(2)求三棱锥D-AEC的体积;
(3)设点M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:
x681012
y2356
(1)请在图中画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)试根据(2)求出的线性回归方程,预测记忆力为9的同学的判断力.
相关公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{1}}^{2}-n\overline{{x}^{2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案