精英家教网 > 高中数学 > 题目详情
9.设随机变量X的分布函数为F(x)=$\left\{\begin{array}{l}{0,x<10}\\{1-\frac{10}{x},x≥10}\end{array}\right.$,用Y表示对X的3次独立重复观察中事件{X>20}出现的次数,则P{Y>1}=$\frac{1}{2}$.

分析 由已知得P(X>20)>1-$\frac{10}{20}$=$\frac{1}{2}$,P{Y>1}=P(Y=2)+P(Y=3)由此能求出结果.

解答 解:∵随机变量X的分布函数为F(x)=$\left\{\begin{array}{l}{0,x<10}\\{1-\frac{10}{x},x≥10}\end{array}\right.$,
∴P(X>20)>1-$\frac{10}{20}$=$\frac{1}{2}$,
∵用Y表示对X的3次独立重复观察中事件{X>20}出现的次数,
∴P{Y>1}=P(Y=2)+P(Y=3)
=${C}_{3}^{2}(\frac{1}{2})^{2}(\frac{1}{2})+{C}_{3}^{3}(\frac{1}{2})^{3}$
=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意n次独立重复试验事件A恰好发生k次的概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=loga(1+x)g(x)=loga(1-x),其中a>0且a≠1,h(x)=f(x)-g(x).
(I)若a=3.求出函数F(x)=h(x)-1的零点;
(Ⅱ)解关于x的不等式h(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算:ln(e$\sqrt{e}$)+log2(log381)+2${\;}^{1+lo{g}_{2}3}$+$\frac{lo{g}_{\sqrt{3}}2+2lo{g}_{3}5}{lo{g}_{9}\frac{1}{4}-\frac{1}{3}lo{g}_{3}125}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.(1)lg25+$\frac{2}{3}$lg8+lg5•lg20+lg22=3
(2)log2$\sqrt{\frac{7}{48}}$+log212-$\frac{1}{2}$log242=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.2015年元旦联欢晚会某师生一块做游戏,数学老师制作了六张卡片放在盒子里,卡片上分别写着六个函数:分别写着六个函数:f1(x)=x2+1,f2(x)=x3,f3(x)=$\frac{ln|x|}{x}$,f4(x)=xcosx,f5(x)=|sinx|,f6(x)=3-x.
(1)现在取两张卡片,记事件A为“所得两个函数的奇偶性相同”,求事件A的概率;
(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是奇函数则停止抽取,否则继续进行,记停止时抽取次数为ξ,写出ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)为偶函数,它在[0,+∞)上为减函数,若f(lgx)<f(1),则x的取值范围是(  )
A.($\frac{1}{10}$,1)B.(0,1)∪(1,+∞)C.($\frac{1}{10}$,10)D.$(0,\frac{1}{10})∪(10,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列有关命题的说法正确的是(  )
A.命题“若x=y,则sinx=siny”的逆否命题为真命题
B.若p∨q为真命题,则p、q均为真命题
C.命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”
D.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“神七”飞天,举国欢庆.据计算,运载飞船的火箭,在点火后1分钟通过的路程为2km,以后每分钟通过的路程比前一分钟增加2km,在到达离地面240km的高度时,火箭与飞船分离这一过程需要的时间是(  )
A.10分钟B.13分钟C.15分钟D.20分钟

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“对任意x∈R,都有x2≥ln2”的否定为(  )
A.对任意x∈R,都有x2<ln2B.不存在x0=R,使得 ${{x}_{0}}^{2}$<ln2
C.存在x0=R,使得  ${{x}_{0}}^{2}$≥ln2D.存在x0=R,使得  ${{x}_{0}}^{2}$≤ln2

查看答案和解析>>

同步练习册答案