精英家教网 > 高中数学 > 题目详情
10.如果实数x,y满足(x+2)2+y2=3,则$\frac{y}{x}$的最大值是$\sqrt{3}$.

分析 设$\frac{y}{x}$=k,$\frac{y}{x}$的最大值就等于连接原点和圆上的点的直线中斜率的最大值,由数形结合法的方式,易得答案

解答 解:设$\frac{y}{x}$=k,则y=kx表示经过原点的直线,k为直线的斜率.
所以求$\frac{y}{x}$的最大值就等价于求同时经过原点和圆上的点的直线中斜率的最大值,
如图示:
从图中可知,斜率取最大值时对应的直线斜率为正且与圆相切,
此时的斜率就是其倾斜角∠EOC的正切值.
易得|OC|=2,|CE|=r=$\sqrt{3}$,可由勾股定理求得|OE|=1,
于是可得到k=tan∠EOC=$\frac{|CE|}{|OE|}$=$\sqrt{3}$,即为$\frac{y}{x}$的最大值.
故答案为:$\sqrt{3}$.

点评 本题考查直线与圆的位置关系,数形结合是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.如图是一个几何体的三视图,正视图是一个等腰直角三角形,侧视图为一个直角三角形,俯视图是一个直角梯形,则此几何体的表面积是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{5+\sqrt{3}}{2}$D.$\frac{5+\sqrt{3}}{2}$+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,按系统抽样的方法从中抽取一个容量为50的样本,如果在第一组抽得的编号是0015,则在第21组抽得的编号是0415.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=lnx-x2+4x+5的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.48B.4C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a,b是任意的实数,且a>b,则(  )
A.|a|>|b|B.$\frac{b}{a}<1$C.lga<lgbD.${(\frac{1}{2})^a}<{(\frac{1}{2})^b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.运行下面的程序,若x=1,则输出的y=6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,直线x+y+$\sqrt{3}$=0与椭圆E仅有一个公共点.
(1)求椭圆E的方程;
(2)直线l被圆O:x2+y2=3所截得的弦长为3,且与椭圆E交于A、B两点,求△ABO面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.长方体中,AB=BC=4,CC1=2,求
(1)A到平面B1D1DB的距离;
(2)A1B1到平面ABC1D1的距离.

查看答案和解析>>

同步练习册答案