精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥,四边形是正方形,

(1)证明:平面平面

(2)若的中点,求二面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1可得,即为正方形,可得从而得平面由面面垂直的判定定理可得平面平面;(2的中点为面面垂直的性质可得平面,在平面内,过作直线,则两两垂直为坐标原点, 所在直线为轴, 轴, 轴,建立空间直角坐标系,分别根据向量垂直数量积为零列方程组求出平面与平面的一个法向量,根据空间向量夹角余弦公式,可得结果.

试题解析(1)∵

,即

又∵为正方形,∴

平面,∵平面,∴平面平面

(2)

的中点为,∵,∴

由(1)可知平面平面,且平面平面

平面

在平面内,过作直线,则两两垂直.

为坐标原点, 所在直线为轴, 轴, 轴,建立空间直角坐标系,

设平面的法向量为

,即,取

设平面的法向量为

,即,取

,由图可知,二面角的余弦值为

【方法点晴】本题主要考查面面垂直的判定定理以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线 .

1)已知直线与双曲线交于不同的两点求实数的值;

(2)过点作直线与双曲线交于不同的两点若弦恰被点平分,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】遂宁市观音湖港口船舶停靠的方案是先到先停.

(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2,3,4,5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.

(2)根据以往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请求出甲船先停靠的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示.

(1)求f(x)的解析式,并求函数f(x)在[﹣ ]上的值域;
(2)在△ABC中,AB=3,AC=2,f(A)=1,求sin2B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两俱乐部举行乒乓球团体对抗赛.双方约定:
①比赛采取五场三胜制(先赢三场的队伍获得胜利.比赛结束)
②双方各派出三名队员.前三场每位队员各比赛﹣场
已知甲俱乐部派出队员A1、A2 . A3 , 其中A3只参加第三场比赛.另外两名队员A1、A2比赛场次未定:乙俱乐部派出队员B1、B2 . B3 , 其中B1参加第一场与第五场比赛.B2参加第二场与第四场比赛.B3只参加第三场比赛
根据以往的比赛情况.甲俱乐部三名队员对阵乙俱乐部三名队员获胜的概率如表:

A1

A2

A3

B1

B2

B3


(1)若甲俱乐部计划以3:0取胜.则应如何安排A1、A2两名队员的出场顺序.使得取胜的概率最大?
(2)若A1参加第一场与第四场比赛,A2参加第二场与第五场比赛,各队员每场比赛的结果互不影响,设本次团体对抗赛比赛的场数为随机变量X,求X的分布列及数学期望E(X)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知所在的平面, 的直径, 上一点,且中点, 中点.

(1)求证:

(2)求证:

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,空间四边形ABCD的对棱AD、BC成600的角,且AD=BC=a,平行于AD与BC的截面分别交AB、AC、CD、BD于E、F、G、H.

(1)求证:四边形EFGH为平行四边形;

(2)E在AB的何处时截面EFGH的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品在近30天内每件的销售价格P元和时间t(t∈N)的关系如图所示.

(1)请确定销售价格P(元)和时间t(天)的函数解析式;

(2)该商品的日销售量Q(件)与时间t(天)的关系是:Q=﹣t+40(0≤t≤30,t∈N),求该商品的日销售金额y(元)与时间t(天)的函数解析式;

(3)求该商品的日销售金额y(元)的最大值,并指出日销售金额最大的一天是30天中的哪一天?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,试判断函数在区间上的单调性,并证明;

若不等式上恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案