11£®Ò»Ì¨»úÆ÷°´²»Í¬µÄתËÙÉú²ú³öÀ´µÄij»úеÁã¼þÓÐһЩ»áÓÐȱµã£¬Ã¿Ð¡Ê±Éú²úÓÐȱµãÁã¼þµÄ¶àÉÙ£¬Ëæ»úÆ÷µÄÔËתµÄËٶȶø±ä»¯£¬Ï±íΪ³éÑùÊÔÑéµÄ½á¹û£º
תËÙx£¨×ª/Ãë-1£©1614128
ÿСʱÉú²úÓÐȱµãµÄÁã¼þÊýy£¨¼þ£©11985
£¨1£©»­³öÉ¢µãͼ£»
£¨2£©ÒÑÖªy¶ÔxÓÐÏßÐÔÏà¹Ø¹ØÏµ£¬Ç󻨹鷽³Ì£»
£¨3£©Èôʵ¼ÊÉú²úÖУ¬ÔÊÐíÿСʱÉú²úµÄ²úÆ·ÖÐÓÐȱµãµÄÁã¼þ×î¶àΪ10¸ö£¬ÄÇô»úÆ÷µÄÔËתËÙ¶ÈÓ¦¿ØÖÆÔÚʲô·¶Î§ÄÚ£¿
¸½£ºÏßÐԻع鷽³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$£®ÖУ¬$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}-\stackrel{¡Ä}{b}\overline{x}$£¬ÆäÖÐ$\overline{x}$£¬$\overline{y}$ΪÑù±¾Æ½¾ùÖµ£®

·ÖÎö £¨1£©ÀûÓÃËù¸øµÄÊý¾Ý»­³öÉ¢µãͼ£»
£¨2£©ÏÈ×ö³öºá±êºÍ×ݱêµÄƽ¾ùÊý£¬×ö³öÀûÓÃ×îС¶þ³Ë·¨ÇóÏßÐԻع鷽³ÌµÄϵÊýµÄÁ¿£¬×ö³öϵÊý£¬Ð´³öÏßÐԻع鷽³Ì£®
£¨3£©¸ù¾ÝÉÏÒ»ÎÊ×ö³öµÄÏßÐԻع鷽³Ì£¬Ê¹µÃº¯ÊýֵСÓÚ»òµÈÓÚ10£¬½â³ö²»µÈʽ£®

½â´ð ½â£º£¨1£©É¢µãͼ£¬ÈçͼËùʾ£®

£¨2£©ÓÉÉ¢µãͼ¿ÉÖª£¬Á½±äÁ¿Ö®¼ä¾ßÓÐÏßÐÔÏà¹Ø¹ØÏµ£®$\overline{x}$=12.5£¬$\overline{y}$=8.25£¬
$\stackrel{¡Ä}{b}$=$\frac{438-4¡Á12.5¡Á8.25}{660-4¡Á12£®{5}^{2}}$¡Ö0.7286£¬$\stackrel{¡Ä}{a}$=8.25-0.7286¡Á12.5¡Ö-0.8571£¬
»Ø¹éÖ±Ïß·½³ÌΪ£º$\stackrel{¡Ä}{y}$=0.7286x-0.8571£»
£¨3£©ÓÉÉÏÒ»ÎÊ¿ÉÖª0.7286x-0.8571¡Ü10£¬
½âµÃx¡Ü14.9013£¬ËùÒÔ»úÆ÷µÄÔËתËÙ¶ÈÓ¦¿ØÖÆÔÚ14.9ת/ÃëÄÚ£®

µãÆÀ ±¾Ì⿼²éÏßÐԻعé·ÖÎö£¬¿¼²éÏßÐԻع鷽³Ì£¬¿¼²éÏßÐԻع鷽³ÌµÄÓ¦Ó㬿¼²é²»µÈʽµÄ½â·¨£¬ÊÇÒ»¸ö×ÛºÏÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®µÈ²îÊýÁÐ{an}ÖУ¬ÒÑÖªS4=2£¬S8=7£¬Ôòa17+a18+a19+a20 µÄÖµµÈÓÚ14£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖª¼¯ºÏP={y|y=-x2+2£¬x¡ÊR}£¬Q={x|y=$\sqrt{2x-4}$}£¬ÄÇôP¡ÉQ={2}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÉèA={1£¬-7}£¬Ôò-7¡ÊA£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÔÕý·½ÌåABCDA1B1C1D1µÄÀâAB£¬AD£¬AA1ËùÔÚµÄÖ±ÏßΪx£¬y£¬zÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£¬ÇÒÕý·½ÌåµÄÀⳤΪһ¸öµ¥Î»³¤¶È£¬ÔòÀâCA1ÖеãµÄ×ø±êΪ£¨$\frac{1}{2}$£¬$\frac{1}{2}$£¬$\frac{1}{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{x+6£¬x£¼t}\\{{x}^{2}+2x£¬x¡Ýt}\end{array}\right.$£¬Èôº¯Êýf£¨x£©µÄÖµÓòΪR£¬ÔòʵÊýtµÄȡֵ·¶Î§ÊÇ[-7£¬2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑ֪˫ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-y2=1£¨a£¾0£©µÄÒ»Ìõ½¥½üÏßÓëÖ±Ïßl£º2x-y+1=0´¹Ö±£¬ÔòʵÊýa=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÊýÁÐ{an}ÊÇÊ×ÏîΪ1£¬¹«²î²»Îª0µÄµÈ²îÊýÁУ¬ÇÒa1£¬a3£¬a17³ÉµÈ±ÈÊýÁÐ
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èôbn=$\frac{1}{{a}_{n}{a}_{n+1}}$£¬SnÊÇÊýÁÐ{bn}µÄǰnÏîºÍ£¬ÇóSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖª a¡ÊR£¬º¯Êý f£¨x£©=a-$\frac{1}{{{2^x}+1}}$£®
£¨1£©Ö¤Ã÷£ºf£¨x£©ÔÚ£¨-¡Þ£¬+¡Þ£©Éϵ¥µ÷µÝÔö£»
£¨2£©Èôf£¨x£©ÎªÆæº¯Êý£¬Çó£º
¢ÙaµÄÖµ£»
¢Úf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸