精英家教网 > 高中数学 > 题目详情
20.已知数列{an}是首项为1,公差不为0的等差数列,且a1,a3,a17成等比数列
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,Sn是数列{bn}的前n项和,求Sn

分析 (1)设设数列{an}的公差为d,其又首项为1,a1,a3,a17成等比数列,利用等比数列的性质可得(a1+2d)2=a1•(a1+16d),求得公差d的值,即可求得数列{an}的通项公式;
(2)由(1)知an=3n-2,利用裂项法可得bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{3}$($\frac{1}{3n-2}$-$\frac{1}{3n+1}$),累加即可求得数列{bn}的前n项和Sn

解答 解:(1)数列{an}是首项为1,公差不为0的等差数列,
设其公差为d,则an=1+(n-1)d.
因为a1,a3,a17成等比数列,
所以(a1+2d)2=a1•(a1+16d),
即(1+2d)2=1×(1+16d),解得d=3,
所以an=3n-2.
(2)因为bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}$($\frac{1}{3n-2}$-$\frac{1}{3n+1}$),
所以Sn=b1+b2+…+bn=$\frac{1}{3}$[(1-$\frac{1}{4}$)+($\frac{1}{4}$-$\frac{1}{7}$)+…+($\frac{1}{3n-2}$-$\frac{1}{3n+1}$)]=$\frac{1}{3}$(1-$\frac{1}{3n+1}$)=$\frac{n}{3n+1}$.

点评 本题考查数列的求和,考查等差数列与等比数列的通项公式的应用,求得数列{an}的通项公式是关键,突出裂项法求和的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,在△ABC中,AB⊥BC,∠BDA=90°,E是BC的中点.求证:∠ABD=∠EDC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
转速x(转/秒-11614128
每小时生产有缺点的零件数y(件)11985
(1)画出散点图;
(2)已知y对x有线性相关关系,求回归方程;
(3)若实际生产中,允许每小时生产的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?
附:线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}-\stackrel{∧}{b}\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在平面直角坐标系xOy中,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$.A为椭圆上异于顶点的一点,点P满足$\overrightarrow{OP}$=$2\overrightarrow{AO}$,
(1)若点P的坐标为(2,$\sqrt{2}$),求椭圆的方程;
(2)设过点P的一条直线交椭圆于B,C两点,且$\overrightarrow{BP}$=m$\overrightarrow{BC}$,直线OA,OB的斜率之积-$\frac{1}{2}$,求实数m的值;
(3)在(1)的条件下,是否存在定圆M,使得过圆M上任意一点T都能作出该椭圆的两条切线,且这两条切线互相垂直?若存在,求出定圆M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=log4(4x+1)+kx与g(x)=log4(a•2x-$\frac{4}{3}$a),其中f(x)是偶函数.
(Ⅰ) 求实数k的值;
(Ⅱ) 求函数g(x)的定义域;
(Ⅲ) 若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆O:x2+y2=4与曲线C:y=3|x-t|,曲线C上两点A(m,n),B(s,p)(m、n、s、p均为正整数),使得圆O上任意一点到点A的距离与到点B的距离之比为定值k(k>1),则ms-np=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C的顶点为坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点,且线段AB的中点为M(2,2).
(1)求抛物线的C的方程;
(2)求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对于任意实数a、b、c、d,下列命题中,
①若a>b,c>d,则a-c>b-d;
②若a>b>0,c>d>0,则ac>bd;
③若a>b>0,则$\root{3}{a}$>$\root{3}{b}$
④若a>b>0,则$\frac{1}{{a}^{2}}$<$\frac{1}{{b}^{2}}$
真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在长为3的线段上任取一点,则该点到两端点的距离都不小于1的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

同步练习册答案