精英家教网 > 高中数学 > 题目详情
8.如图,在平面直角坐标系xOy中,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$.A为椭圆上异于顶点的一点,点P满足$\overrightarrow{OP}$=$2\overrightarrow{AO}$,
(1)若点P的坐标为(2,$\sqrt{2}$),求椭圆的方程;
(2)设过点P的一条直线交椭圆于B,C两点,且$\overrightarrow{BP}$=m$\overrightarrow{BC}$,直线OA,OB的斜率之积-$\frac{1}{2}$,求实数m的值;
(3)在(1)的条件下,是否存在定圆M,使得过圆M上任意一点T都能作出该椭圆的两条切线,且这两条切线互相垂直?若存在,求出定圆M;若不存在,说明理由.

分析 (1)由题意可知:$\overrightarrow{OP}$=$2\overrightarrow{AO}$,求得A点坐标,由e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,将A代入椭圆方程,即可求得a和b的值,求得椭圆的方程;
(2)设A(x1,y1),B(x2,y2),C(x3,y3),根据$\overrightarrow{BP}$=m$\overrightarrow{BC}$,求得$\left\{\begin{array}{l}{{x}_{3}=\frac{m-1}{m}{x}_{2}-\frac{2}{m}{x}_{1}}\\{{y}_{3}=\frac{m-1}{m}{y}_{2}-\frac{2}{m}{y}_{1}}\end{array}\right.$.代入椭圆方程$\frac{(\frac{m-1}{m}{x}_{2}-\frac{2}{m}{x}_{1})^{2}}{{a}^{2}}$+$\frac{(\frac{m-1}{m}{y}_{2}-\frac{2}{m}{y}_{1})^{2}}{{b}^{2}}$=1,由直线OA,OB的斜率之积-$\frac{1}{2}$,利用斜率公式求得$\frac{{x}_{1}{x}_{2}}{{a}^{2}}+\frac{{y}_{1}{y}_{2}}{{b}^{2}}=1$,代入整理得:$\frac{4}{{m}^{2}}+\frac{(m-1)^{2}}{{m}^{2}}=1$,解得:m=$\frac{5}{2}$,;
(3)假设存在否存在定圆M,求得直线的切线方程,代入椭圆方程,由△=0,求得(2-${x}_{0}^{2}$)k2+2kx0y0+1-${y}_{0}^{2}$=0,则椭圆的两条切线斜率k1,k2分别是(2-${x}_{0}^{2}$)k2+2kx0y0+1-${y}_{0}^{2}$=0的两解,由韦达定理求得k1k2=$\frac{1-{y}_{0}^{2}}{2-{x}_{0}^{2}}$=$\frac{1-(3-{x}_{0}^{2})}{2-{x}_{0}^{2}}$=$\frac{{x}_{0}^{2}-2}{2-{x}_{0}^{2}}$=-1,因此椭圆的两条切线垂直,则当x0=±$\sqrt{2}$时,显然存在两条互相垂直的切线,即可求得圆的方程.

解答 解:(1)由P(2,$\sqrt{2}$),设A(x,y),则$\overrightarrow{OP}$=(2,$\sqrt{2}$),$\overrightarrow{AO}$=(-x,-y),
由题意可知:$\overrightarrow{OP}$=$2\overrightarrow{AO}$,
∴$\left\{\begin{array}{l}{2=-2x}\\{\sqrt{2}=-2y}\end{array}\right.$,则$\left\{\begin{array}{l}{x=-1}\\{y=-\frac{\sqrt{2}}{2}}\end{array}\right.$,
A(-1,-$\frac{\sqrt{2}}{2}$),代入椭圆方程,得$\frac{1}{{a}^{2}}+\frac{1}{2{b}^{2}}=1$,
又椭圆的离心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,
则$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{2}}{2}$,②
由①②,得a2=2,b2=1,
故椭圆的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)设A(x1,y1),B(x2,y2),C(x3,y3),
∵$\overrightarrow{OP}$=$2\overrightarrow{AO}$,
∴P(-2x1,-2y1),.
∵$\overrightarrow{BP}$=m$\overrightarrow{BC}$,
∴(-2x1-x2,-2y1-y2)=m(x3-x2,y3-y2),
即$\left\{\begin{array}{l}{-2{x}_{1}-{x}_{2}=m({x}_{3}-{x}_{2})}\\{-2{y}_{1}-{y}_{2}=m({y}_{3}-{y}_{2})}\end{array}\right.$,
于是$\left\{\begin{array}{l}{{x}_{3}=\frac{m-1}{m}{x}_{2}-\frac{2}{m}{x}_{1}}\\{{y}_{3}=\frac{m-1}{m}{y}_{2}-\frac{2}{m}{y}_{1}}\end{array}\right.$.
代入椭圆方程,得$\frac{(\frac{m-1}{m}{x}_{2}-\frac{2}{m}{x}_{1})^{2}}{{a}^{2}}$+$\frac{(\frac{m-1}{m}{y}_{2}-\frac{2}{m}{y}_{1})^{2}}{{b}^{2}}$=1,
$\frac{4}{{m}^{2}}$($\frac{{x}_{1}^{2}}{{a}^{2}}$+$\frac{{y}_{2}^{2}}{{b}^{2}}$)+$\frac{(m-1)^{2}}{{m}^{2}}$($\frac{{x}_{2}^{2}}{{a}^{2}}$+$\frac{{y}_{2}^{2}}{{b}^{2}}$)-$\frac{4(m-1)}{{m}^{2}}$($\frac{{x}_{1}{x}_{2}}{{a}^{2}}$+$\frac{{y}_{1}{y}_{2}}{{b}^{2}}$)=1,
∵A,B在椭圆上,$\frac{{x}_{1}^{2}}{{a}^{2}}+\frac{{y}_{1}^{2}}{{b}^{2}}=1$,$\frac{{x}_{2}^{2}}{{a}^{2}}+\frac{{y}_{2}^{2}}{{b}^{2}}=1$,
由直线OA,OB的斜率之积-$\frac{1}{2}$,即$\frac{{y}_{1}}{{x}_{1}}$•$\frac{{y}_{2}}{{x}_{2}}$=-$\frac{1}{2}$
∴$\frac{{x}_{1}{x}_{2}}{{a}^{2}}+\frac{{y}_{1}{y}_{2}}{{b}^{2}}=1$,
∴$\frac{4}{{m}^{2}}+\frac{(m-1)^{2}}{{m}^{2}}=1$,解得:m=$\frac{5}{2}$,

(3)存在定圆M,x2+y2=3,
在定圆M上任取一点T(x0,y0),其中x0≠±$\sqrt{2}$,
设过点T(x0,y0)的椭圆的切线方程为y-y0=k(x-y0),即y=kx-kx0+y0
∴$\left\{\begin{array}{l}{y=kx-k{x}_{0}+{y}_{0}}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,整理得:(1+2k2)x2-4k(-kx0+y0)x+2(-kx0+y02-2=0,
由△=16k2(-kx0+y02-8(1+2k2)[(-kx0+y02-1]=0,
整理得:(2-${x}_{0}^{2}$)k2+2kx0y0+1-${y}_{0}^{2}$=0
故过点T(x0,y0)的椭圆的两条切线斜率k1,k2分别是(2-${x}_{0}^{2}$)k2+2kx0y0+1-${y}_{0}^{2}$=0的两解.
故k1k2=$\frac{1-{y}_{0}^{2}}{2-{x}_{0}^{2}}$=$\frac{1-(3-{x}_{0}^{2})}{2-{x}_{0}^{2}}$=$\frac{{x}_{0}^{2}-2}{2-{x}_{0}^{2}}$=-1,
∴椭圆的两条切线垂直.
当x0=±$\sqrt{2}$时,
显然存在两条互相垂直的切线.

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,直线的斜率公式,韦达定理的综合应用,考查计算能力,考查分析问题及解决问题的能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在正方体ABCD-A1B1C1D1中E,G,H分别为BC,C1D1,AA1的中点.
( 1)求证:EG∥平面BDD1B1
( 2)求异面直线B1H与 EG所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设A={1,-7},则-7∈A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{x+6,x<t}\\{{x}^{2}+2x,x≥t}\end{array}\right.$,若函数f(x)的值域为R,则实数t的取值范围是[-7,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系xOy中,已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的一条渐近线与直线l:2x-y+1=0垂直,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x∈R|0<ax+1≤5},B={x∈R|$\frac{1}{2}$<x+1≤2}(a≠0)
(1)A,B能否相等?若能,求出实数a的值;若不能,试说明理由;
(2)若命题p:x∈A,命题q:x∈B,且p是q充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}是首项为1,公差不为0的等差数列,且a1,a3,a17成等比数列
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,Sn是数列{bn}的前n项和,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+cosx+a(a∈R,a是常数).
(1)求函数f(x)的最小正周期;
(2)若a=0,作出y=f(x)在[-π,π]上的图象;
(3)若x∈[-$\frac{π}{2}$,$\frac{π}{2}$]时,f(x)的最大值为1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.f(x)=x•ex-1的零点个数为1个.

查看答案和解析>>

同步练习册答案