分析 先求出直线方程的斜率,并表示出双曲线方程的渐近线,再由双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的一条渐近线与直线l:2x-y+1=0垂直可知两直线的斜率之积等于-1,可求出a的值.
解答 解:直线l:2x-y+1=0的斜率等于2,双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的渐近线可以表示为:y=±$\frac{x}{a}$
又因为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的一条渐近线与直线l:2x-y+1=0垂直,
∴2×(-$\frac{1}{a}$)=-1,∴a=2,
故答案为2
点评 本题主要考查双曲线的基本性质--渐近线方程的表示,考查两直线的位置关系.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 转速x(转/秒-1) | 16 | 14 | 12 | 8 |
| 每小时生产有缺点的零件数y(件) | 11 | 9 | 8 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{x-1}}}{2x+1}$ | B. | $-\frac{{\sqrt{x-1}}}{2x+1}$ | C. | $\frac{{\sqrt{x}}}{2x+3}$ | D. | $-\frac{{\sqrt{x}}}{2x+3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com