精英家教网 > 高中数学 > 题目详情
1.已知 a∈R,函数 f(x)=a-$\frac{1}{{{2^x}+1}}$.
(1)证明:f(x)在(-∞,+∞)上单调递增;
(2)若f(x)为奇函数,求:
①a的值;
②f(x)的值域.

分析 (1)证法一:设x1<x2,作差比较作差可得f(x1)<f(x2),根据函数单调性的定义,可得:f(x)在(-∞,+∞)上单调递增;
证法二:求导,根据f′(x)>0恒成立,可得:f(x)在(-∞,+∞)上单调递增.
(2)①若f(x)为奇函数,则 f(0)=0,解得a的值;
②根据①可得函数的解析式,进而可得f(x)的值域.

解答 证明:(1)证法一:设x1<x2
则${2}^{{x}_{1}}+1>0$,${2}^{{x}_{2}}+1>0$,${2}^{{x}_{1}}-{2}^{{x}_{1}}<0$
则f(x1)-f(x2)=(a-$\frac{1}{{2}^{{x}_{1}}+1}$)-(a-$\frac{1}{{2}^{{x}_{2}}+1}$)=$\frac{{2}^{{x}_{1}}-{2}^{{x}_{2}}}{{(2}^{{x}_{1}}+1){(2}^{{x}_{2}}+1)}$<0.
∴f(x1)-f(x2)<0,
∴f(x1)<f(x2),
故f(x)在(-∞,+∞)上单调递增;
证法二:∵函数 f(x)=a-$\frac{1}{{{2^x}+1}}$.
∴f′(x)=$\frac{ln2•{2}^{x}}{{(2}^{x}+1)^{2}}$,
∵f′(x)>0恒成立,
故f(x)在(-∞,+∞)上单调递增;
(2)①若f(x)为奇函数,
则 f(0)=a-$\frac{1}{2}$=0,
解得:a=$\frac{1}{2}$,
②f(x)=$\frac{1}{2}$-$\frac{1}{{{2^x}+1}}$,
∵2x+1>1,
∴0<$\frac{1}{{{2^x}+1}}$<1,
故-$\frac{1}{2}$<f(x)<$\frac{1}{2}$,
故函数的值域为:(-$\frac{1}{2}$,$\frac{1}{2}$).

点评 本题考查的知识点是函数的单调性,函数的奇偶性,函数的值域,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
转速x(转/秒-11614128
每小时生产有缺点的零件数y(件)11985
(1)画出散点图;
(2)已知y对x有线性相关关系,求回归方程;
(3)若实际生产中,允许每小时生产的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?
附:线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}-\stackrel{∧}{b}\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C的顶点为坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点,且线段AB的中点为M(2,2).
(1)求抛物线的C的方程;
(2)求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对于任意实数a、b、c、d,下列命题中,
①若a>b,c>d,则a-c>b-d;
②若a>b>0,c>d>0,则ac>bd;
③若a>b>0,则$\root{3}{a}$>$\root{3}{b}$
④若a>b>0,则$\frac{1}{{a}^{2}}$<$\frac{1}{{b}^{2}}$
真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}3{x^2}-4,x>0\\ x+2,x=0\\-1,x<0\end{array}$,则$f(f(\frac{1}{2}))$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知首项为3的数列{an}满足:$\frac{1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$=$\frac{1}{3}$,且bn=$\frac{1}{{a}_{n}-1}$.
(1)求证:数列{bn}是等差数列;
(2)求数列{2n•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x2+1)=$\frac{x}{{2{x^2}+3}}$(x>0),则f(x)=(  )
A.$\frac{{\sqrt{x-1}}}{2x+1}$B.$-\frac{{\sqrt{x-1}}}{2x+1}$C.$\frac{{\sqrt{x}}}{2x+3}$D.$-\frac{{\sqrt{x}}}{2x+3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在长为3的线段上任取一点,则该点到两端点的距离都不小于1的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.计算:
(1)${27^{\frac{2}{3}}}-{2^{{{log}_2}3}}×{log_2}\frac{1}{8}$;
(2)$\frac{1}{{\sqrt{5}-2}}-{(\sqrt{5}+2)^0}-\sqrt{{{({2-\sqrt{5}})}^2}}$.

查看答案和解析>>

同步练习册答案