精英家教网 > 高中数学 > 题目详情
13.若四边形ABCD满足:$\overrightarrow{AD}$=$\overrightarrow{BC}$且|$\overrightarrow{AD}}$|=|${\overrightarrow{AB}}$|,则四边形ABCD的形状是(  )
A.等腰梯形B.矩形C.正方形D.菱形

分析 由$\overrightarrow{AD}$=$\overrightarrow{BC}$,利用向量相等的意义可得:四边形ABCD是平行四边形.又|$\overrightarrow{AD}}$|=|${\overrightarrow{AB}}$|,即可得出.

解答 解:由$\overrightarrow{AD}$=$\overrightarrow{BC}$,可得四边形ABCD是平行四边形.
又|$\overrightarrow{AD}}$|=|${\overrightarrow{AB}}$|,则四边形ABCD是菱形.
故选:D.

点评 本题考查了向量相等、平行四边形与菱形的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数y=-cos2x+2sinx+2的最小值为(  )
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设a=$\sqrt{3}$+2$\sqrt{2}$,b=2+$\sqrt{7}$,则a、b的大小关系为?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.抛物线x=$\frac{1}{4}$y2的焦点到准线的距离为(  )
A.$\frac{1}{8}$B.$\frac{1}{2}$C.2D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=$\left\{\begin{array}{l}{e^x},x≤1\\-\frac{1}{x-1},x>1\end{array}$方程f(x)-k(x+1)=0有两个不等实根,则实数k的取值范围为(  )
A.(1,$\frac{e}{2}}$)B.(1,$\frac{e}{2}}$]C.(-∞,0)∪(1,$\frac{e}{2}}$]D.(-∞,0)∪(1,$\frac{e}{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=x3+sinx,(x∈R).若当0<θ<$\frac{π}{2}$时,不等式f(msinθ)+f(1-m)>0恒成立,则实数m的取值范围是(  )
A.[1,+∞)B.(-∞,1]C.($\frac{1}{2}$,1)D.($\frac{1}{2}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对两个变量的相关系数r,下列说法中正确的是(  )
A.|r|趋近于0时,没有非线性相关关系B.|r|越接近于1时,线性相关程度越强
C.|r|越大,相关程度越大D.|r|越小,相关程度越大

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x-sinx,若不等式f(-4t)>f(2m+mt2)对任意实数t恒成立,则实数m的取值范围是(  )
A.(-∞,-$\sqrt{2}$)B.(-$\sqrt{2}$,0)C.(-∞,0)∪($\sqrt{2}$,+∞)D.(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=3sin3x($\frac{π}{6}$≤x≤$\frac{5π}{6}$)与函数y=3的图象围成一个封闭图形,这个封闭图形的面积是(  )
A.B.2C.D.4

查看答案和解析>>

同步练习册答案