精英家教网 > 高中数学 > 题目详情

为△的内角A、B、C的对边,,且的夹角为,求C;


解析:

 

,∴ 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)已知向量
m
=(1,1),向量
n
和向量
m
的夹角为
4
,|
m
|=
2
m
n
=-1.
(1)求向量
n

(2)若向量
n
与向量
q
=(1,0)的夹角为
π
2
,向量
p
=(cosA,2cos2
C
2
),其中A、B、C为△ABC的内角a、b、c为三边,b2+ac=a2+c2,求|
n
+
p
|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、c分别为△ABC的内角A、B、C的对边,向量
m
=(
3
sinA,sinB)
n
=(cosB,
3
cosA)
,若
m
n
=1+cos(A+B)

(1)求角C的大小;
(2)若a+b=4,c=2
3
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知(a+c)(sinA-sinC)-(a-b)sinB=0,其中A、B、C分别为△ABC的内角A、B、C所对的边.求:
(Ⅰ)求角C的大小;
(Ⅱ)求满足不等式sinA+sinB≥
32
的角A的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)已知a,b,c为△ABC的内角A,B,C的对边,满足
sinB+sinC
sinA
=
2-cosB-cosC
cosA
,函数f(x)=sinωx(ω>0)在区间[0,
π
3
]
上单调递增,在区间[
π
3
3
]
上单调递减.
(Ⅰ)证明:b+c=2a;
(Ⅱ)若f(
π
9
)=cosA
,证明:△ABC为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中有如下结论:“若点M为△ABC的重心,则
MA
+
MB
+
MC
=
0
”,设a,b,c分别为△ABC的内角A,B,C的对边,点M为△ABC的重心.如果
aMA
+
bMB
+
3
3
cMC
 =
0
,则内角A的大小为
π
6
π
6

查看答案和解析>>

同步练习册答案