精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,过上一动点轴,垂足为点.当点满足时,点的轨迹恰是一个圆.

(1)求椭圆的离心率;

(2)若与曲线切于点的直线与椭圆交于两点,且当轴时,,求的最大面积.

【答案】(1);(2).

【解析】分析:(1)先求点N的轨迹方程得到,再求椭圆的离心率.(2)先转化为求|AB|的最大值,再求,再求|AB|的最大值和面积的最大值.

详解:(1)设,由轴知

,∴

又∵点在椭圆上,∴,即

点的轨迹恰是一个圆,那么

,∴

(2)由(1)知椭圆,圆

轴时,切点轴的交点,即

此时,即

设直线(斜率显然存在),

由直线相切知,,即

联立直线与椭圆的方程

其中

那么

),则

又函数上单调递增,则,故

,即的最大面积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某海滨浴场一天的海浪高度是时间的函数,记作,下表是某天各时的浪高数据:

0

3

6

9

12

15

18

21

24

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

1)选用一个三角函数来近似描述这个海滨浴场的海浪高度与时间的函数关系;

2)依据规定,当海浪高度不少于时才对冲浪爱好者开放海滨浴场,请依据(1)的结论,判断一天内的之间,有多少时间可供冲浪爱好者进行冲浪?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知线C的极坐标方程为:ρ=2sin(θ+),过P(0,1)的直线l的参数方程为:(t为参数),直线l与曲线C交于M,N两点.

(1)求出直线l与曲线C的直角坐标方程.

(2)求|PM|2+|PN|2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数图象上所有点的横坐标缩短为原来的,纵坐标不变,再向右平移个单位长度,得到函数的图象,则下列说法正确的是( )

A. 函数的一条对称轴是

B. 函数的一个对称中心是

C. 函数的一条对称轴是

D. 函数的一个对称中心是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程](10分

在极坐标系中,圆C的极坐标方程为,若以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系.

(1)求圆C的一个参数方程;

(2)在平面直角坐标系中,是圆C上的动点,试求的最大值,并求出此时点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)求函数的单调区间;

(2)若函数存在两个极值点,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示, 是边长为3的正方形, 平面与平面所成角为.

(Ⅰ)求证: 平面

(Ⅱ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面是一幅统计图,根据此图得到的以下说法中正确的是(

A.这几年生活水平逐年得到提高

B.生活费收入指数增长最快的一年是2015

C.生活价格指数上涨速度最快的一年是2016

D.虽然2017年的生活费收入增长缓慢,但生活价格指数略有降低,因而生活水平有较大的改善

E.2016年生活价格指数上涨的速度与2017年生活价格指数下降的速度相同

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为;1小时以上且不超过2小时离开的概率分别为;两人滑雪时间都不会超过3小时.

(1)求甲、乙两人所付滑雪费用相同的概率;

(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E(ξ).

查看答案和解析>>

同步练习册答案