精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+3,x=2是y=f(x)的一个极值点.
(1)求实数a的值.
(2)若方程f(x)=m只有一个解,则m的取值范围.
考点:利用导数研究函数的极值,利用导数研究函数的单调性
专题:导数的综合应用
分析:(1)由已知得f′(x)=3x2+2ax,且f′(2)=12+4a=0,由此能求出a.
(2)由(1)知f(x)=x3-3x2+3,f′(x)=3x2-6x,由此利用导数性质f(x)极小值=f(2)=-1,f(x)极大值=f(0)=3,由此能求出满足方程f(x)=m只有一个解的m的值.
解答: 解:(1)∵f(x)=x3+ax2+3,
∴f′(x)=3x2+2ax,
∵x=2是y=f(x)的一个极值点,
∴f′(2)=12+4a=0,解得a=-3.
(2)由(1)知f(x)=x3-3x2+3,
f′(x)=3x2-6x,
由f′(x)=0,得x=0或x=2,
当x∈(-∞,0)时,f′(x)>0;当x∈(0,2)时,f′(x)<0;
当x∈(2,+∞)时,f′(x)>0.
∴f(x)增区间为(-∞,0),(2,+∞),减区间为(0,2),
∴f(x)极小值=f(2)=-1,f(x)极大值=f(0)=3,
∵方程f(x)=m只有一个解,
∴结合函数性质,得m<-1或m>3.
点评:本题考查函数的极大值和极小值的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图程序框图,若输入x0=1,则输出的S=(  )
A、0B、1C、-1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个正三棱柱的正视图如图所示,则其侧视图的面积等于(  )
A、
3
B、2
C、2
3
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=x-a(x+1)ln(x+1).
(Ⅰ)求f(x)的极值点;
(Ⅱ)当a=1时,若方程f(x)=t在[-
1
2
,1]上有两个实数解,求实数t的取值范围;
(Ⅲ)证明:当m>n>0时,(1+m)n<(1+n)m

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+b在x=1处有极值2.求函数f(x)=x2-2ax+b在闭区间[0,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+2,x≤-1
2x,-1<x<2
x2
2
,x≥2

(1)求f{f[f(-
7
4
)]}
(2)若f(a)=3,求a的值;
(3)画出f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin(ωx+ϕ),(0<ϕ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为
π
2

(Ⅰ)求f(
π
8
)的值;
(Ⅱ)将函数y=f(x)的图象向右平移
π
6
个单位后,得到函数y=g(x)的图象,求y=g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+3x在点A,B处分别取得极大值和极小值.
(1)求A,B两点的坐标;
(2)过原点O的直线l若与f(x)的图象交于A,B两点,求|OA||OB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(1,
3
),
b
=(cos2x,sin2x),设函数f(x)=
a
b
,求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

同步练习册答案