2£®ÒÑÖªÁ½µãM£¨-1£¬0£©£¬N£¨1£¬0£©£¬ÇÒµãPʹ$\overrightarrow{MP}•\overrightarrow{MN}$£¬$\overrightarrow{PM}•\overrightarrow{PN}$£¬$\overrightarrow{NM}•\overrightarrow{NP}$³É¹«²îСÓÚÁãµÄµÈ²îÊýÁУ®
£¨1£©ÇóÖ¤£ºx2+y2=3£¨x£¾0£©
£¨2£©ÈôµãP×ø±êΪ£¨x0£¬y0£©£¬¼Ç¦ÈΪ$\overrightarrow{PM}$Óë$\overrightarrow{PN}$µÄ¼Ð½Ç£¬Çótan¦È£®

·ÖÎö £¨1£©Éè³öÒªÇó¹ì¼£µÄµãµÄ×ø±ê£¬¸ù¾ÝËù¸øµÄÁ½¸öµãµÄ×ø±êд³öÒªÓõÄÏòÁ¿£¬×ö³öÏòÁ¿µÄÊýÁ¿»ý£¬¸ù¾Ý$\overrightarrow{MP}•\overrightarrow{MN}$£¬$\overrightarrow{PM}•\overrightarrow{PN}$£¬$\overrightarrow{NM}•\overrightarrow{NP}$³É¹«²îСÓÚÁãµÄµÈ²îÊýÁУ¬Áгö²»µÈʽºÍµÈʽ£¬ÕûÀíÕûʽµÃµ½½á¹û£®
£¨2£©ÇóÁ½¸öÏòÁ¿µÄ¼Ð½Ç£¬¸ù¾ÝÇòÏòÁ¿¼Ð½ÇµÄ¹«Ê½£¬ÏÈÓÃÇó³öÊýÁ¿»ýºÍÄ£µÄ³Ë»ý£¬Çó³ö½ÇµÄÓàÏÒÖµ£¬¸ù¾Ýͬ½ÇµÄÈý½Çº¯ÊýµÄ¹ØÏµ£¬ÓÃÒÑÖªÌõ¼þ±íʾ³ötan¦È

½â´ð ½â£º£¨1£©¼ÇP£¨x£¬y£©£¬ÓÉM£¨-1£¬0£©£¬N£¨1£¬0£©µÃ$\overrightarrow{PM}$=£¨-1-x£¬-y£©£¬
$\overrightarrow{PN}$=£¨1-x£¬-y£©£¬$\overrightarrow{MN}$=£¨2£¬0£©£¬$\overrightarrow{MP}•\overrightarrow{MN}$=2£¨x+1£©
¡à$\overrightarrow{PM}•\overrightarrow{PN}$=x2+y2-1£¬$\overrightarrow{NM}•\overrightarrow{NP}$=2£¨1-x£©£¬
¡ß$\overrightarrow{MP}•\overrightarrow{MN}$£¬$\overrightarrow{PM}•\overrightarrow{PN}$£¬$\overrightarrow{NM}•\overrightarrow{NP}$Êǹ«²îСÓÚÁãµÄµÈ²îÊýÁÐ
¡à$\left\{\begin{array}{l}{{x}^{2}2+{y}^{2}-1=\frac{1}{2}[2£¨1+x£©+2£¨1-x£©]}\\{2£¨1-x£©-2£¨1+x£©£¼0}\end{array}\right.$
¼´x2+y2=3£¨x£¾0£©£¬
¡àµãPµÄ¹ì¼£ÊÇÒÔÔ­µãΪԲÐÄ£¬$\sqrt{3}$Ϊ°ë¾¶µÄÓÒ°ëÔ²£®
£¨2£©µãPµÄ×ø±êΪ£¨x0£¬y0£©£¬Ôòx02+y02=3£¬$\overrightarrow{PM}•\overrightarrow{PN}$=x02+y02-1=2£¬
¡ß|$\overrightarrow{PM}$|•|$\overrightarrow{PN}$|=$\sqrt{£¨1+{x}_{0}£©^{2}{{+y}_{0}}^{2}}•\sqrt{£¨1-{x}_{0}£©^{2}+{{y}_{0}}^{2}}$
=$\sqrt{£¨4+2{x}_{0}£©£¨4-2{x}_{0}£©}$=2$\sqrt{4-{{x}_{0}}^{2}}$£¬
¡àcos¦È=$\frac{\overrightarrow{PM}•\overrightarrow{PN}}{|\overrightarrow{PM}||\overrightarrow{PN}|}$=$\frac{1}{\sqrt{4-{{x}_{0}}^{2}}}$£¬
¡ß0£¼x0¡Ü$\sqrt{3}$£¬
¡à$\frac{1}{2}$£¼cos¦È¡Ü1£¬0¡Ü¦È£¼$\frac{¦Ð}{3}$£¬
sin¦È=$\sqrt{1-co{s}^{2}¦È}$=$\sqrt{1-\frac{1}{4-{{x}_{0}}^{2}}}$£¬
tan¦È=$\frac{sin¦È}{cos¦È}$
=$\sqrt{3-{{x}_{0}}^{2}}$=|y0|£®

µãÆÀ ÕâÊÇÒ»¸öÇó¹ì¼£µÄÎÊÌ⣬¿¼²éÀûÓÃÏòÁ¿µÄÊýÁ¿»ýÇóÏòÁ¿µÄ¼Ð½Ç¡¢µÈ²îÊýÁе͍Ò壬ͬ½ÇµÄÈý½Çº¯Êý¹ØÏµ£¬×ÛºÏÐÔ½ÏÇ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªA={x|log2x£¼2}£¬B={x|1£¼x£¼5}£¬ÔòA¡ÈB=£¨¡¡¡¡£©
A£®{x|x£¼5}B£®{x|x£¾1}C£®{x|0£¼x£¼5}D£®{x|1£¼x£¼4}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®º¯Êýf£¨x£©=$\frac{£¨x-1£©^{0}}{\sqrt{\frac{1}{2}-lo{g}_{2}x}}$µÄ¶¨ÒåÓòÓÃÇø¼ä±íʾΪ£¨0£¬1£©¡È£¨1£¬$\sqrt{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔÚ¡÷ABCÖУ¬Èý¸öÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÈôB=15¡ã£¬C=45¡ã£¬c=4£¬Ôò×î´ó±ß³¤Îª£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®2$\sqrt{2}$C£®$\sqrt{3}$D£®2$\sqrt{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªf¡ä£¨x£©ÊǺ¯Êýf£¨x£©=x4+3x-2015µÄµ¼º¯Êý£¬Ôòf¡ä£¨-1£©µÈÓÚ£¨¡¡¡¡£©
A£®-2014B£®0C£®-1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®»¯¼ò£º$\frac{cos£¨-¦Á£©•tan£¨7¦Ð+¦Á£©}{sin£¨¦Ð+¦Á£©}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚ¼«×ø±êϵÖУ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$sin£¨¦È-$\frac{¦Ð}{4}$£©£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+4t}\\{y=-1-3t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÉèµãP£¨1£¬-1£©£¬Ö±ÏßlÓëÇúÏßC½»ÓÚA¡¢BÁ½µã£¬Çó|PA|•|PB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ1Ëùʾ£¬Õý·½ÐÎABCDµÄ±ß³¤Îª1£¬EÊÇCDÉÏÒìÓÚC£¬DµÄ¶¯µã£¬µãFÔÚBCÉÏ£¬ÇÒEFÓëÕý·½ÐÎABCDµÄ¶Ô½ÇÏßBDƽÐУ¬HÊÇÕý·½ÐÎABCDµÄ¶Ô½ÇÏßACÓëEFµÄ½»µã£¬NÊÇÕý·½ÐÎABCDÁ½¶Ô½ÇÏߵĽ»µã£¬ÏÖÑØEF½«¡÷CEFÕÛÆðµ½¡÷PEFµÄλÖã¬Èçͼ2£¬Ê¹PH¡ÍAH£¬¼ÇCE=x£¬V£¨x£©±íʾÎåÀâ×¶P-ABFEDµÄÌå»ý£®
£¨1£©ÇóÖ¤£ºBD¡ÍÆ½ÃæAPH
£¨2£©ÇóV£¨x£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªµ×ÃæÎªÕýÈý½ÇÐεÄÈýÀâÖùABC-A1B1C1ÖУ¬AA1¡ÍÆ½ÃæABC£¬D¡¢E·Ö±ðÊÇA1B1£¬AA1µÄÖе㣬FÊÇAB±ßÉϵĵ㣬ÇÒFB=3AF£¬Á¬½ÓEF¡¢DB¡¢C1B¡¢C1D£®
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæBC1D¡ÍÆ½ÃæABB1A1£»
£¨¢ò£©ÔÚÏß¶ÎACÉÏ£¬ÊÇ·ñ´æÔÚÒ»µãM£¬Ê¹µÃÆ½ÃæFEM¡ÎÆ½ÃæBC1D£¬Èô´æÔÚ£¬ÇëÕÒ³öµãMµÄλÖ㬲¢Ö¤Ã÷Æ½ÃæFEM¡ÎÆ½ÃæBC1D£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸