精英家教网 > 高中数学 > 题目详情
10.在△ABC中,三个内角A,B,C的对边分别为a,b,c,若B=15°,C=45°,c=4,则最大边长为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{6}$

分析 由B与C的度数求出A的度数,判断得到a为最大边,再由c,sinC以及sinA的值,利用正弦定理求出a的值即为最大边长.

解答 解:∵△ABC中,B=15°,C=45°,c=4,
∴A=120°,即a为最大边,
则由正弦定理$\frac{a}{sinA}$=$\frac{c}{sinC}$得:a=$\frac{csinA}{sinC}$=$\frac{4×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=2$\sqrt{6}$.
故选:D.

点评 此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知m、n、s、t∈R*,m+n=4,$\frac{m}{s}$+$\frac{n}{t}$=9其中m、n是常数,且s+t的最小值是$\frac{8}{9}$,满足条件的点(m,n)是双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{8}$=1一弦的中点,则此弦所在直线方程为(  )
A.x+4y-10=0B.2x-y-2=0C.4x+y-10=0D.4x-y-6=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=(x2+ax+1 )ex
(Ⅰ)若函数f(x)在区间(2,3)上递增,求实数a的取值范围;
(Ⅱ)若曲线y=f(x)在x=0处的切线方程为y=l,求证:对任意x1,x2∈[0,1],|f(x1)-f (x2)|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\frac{1}{x}$在其定义域上是减函数.错误(判断对错),说明理由:f(x)定义域不连续.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.从8男4女中选出5名学生代表,按下列条件各有多少种选法:
(1)至少有一名女同学;
(2)至少有两名女同学,但女甲和女乙有且只有一人当选;
(3)至多有两名女同学;
(4)女生甲、乙都不当选;
(5)必须有女同学当选,但不得超过女同学的半数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.奇函数f(x)是R上的减函数,且f(x2-4x+4)+f(y2+4y)≥0,则x2+y2的最小值是12-8$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知两点M(-1,0),N(1,0),且点P使$\overrightarrow{MP}•\overrightarrow{MN}$,$\overrightarrow{PM}•\overrightarrow{PN}$,$\overrightarrow{NM}•\overrightarrow{NP}$成公差小于零的等差数列.
(1)求证:x2+y2=3(x>0)
(2)若点P坐标为(x0,y0),记θ为$\overrightarrow{PM}$与$\overrightarrow{PN}$的夹角,求tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的点P到左、右两焦点F1,F2的距离之和为2$\sqrt{2}$,离心率为$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)过右焦点F2的直线l交椭圆于A、B两点.
(1)若y轴上一点$M(0,\frac{1}{3})$满足|MA|=|MB|,求直线l斜率k的值;
(2)是否存在这样的直线l,使S△ABO的最大值为$\frac{{\sqrt{2}}}{2}$(其中O为坐标原点)?若存在,求直线l方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,BD⊥DC,侧面PAB⊥底面ABCD,PA=AD=AB,点M是PB的中点.
(Ⅰ)求证:AM∥平面PDC
(Ⅱ)求证:平面PDC⊥平面PBC.

查看答案和解析>>

同步练习册答案