精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边长分别为a,b,c,若△ABC的周长为
2
+1
,且sinA+sinB=
2
sinC

(1)求边AB的长;
(2)若△ABC的面积为
1
6
sinC
,求角C的度数.
分析:(1)直接利用正弦定理以及三角形的周长,即可求边AB的长;
(2)通过△ABC的面积为
1
6
sinC
,利用余弦定理直接求出求角C的度数.
解答:解:设△ABC的三边长分别为a,b,c,
(1)由题意及正弦定理得
a+b+c=
2
+1
a+b=
2
c
,故c=AB=1(4分)
(2)∵S=
1
2
absinC=
1
6
sinC
,∴ab=
1
3
(6分)
又c=1,∴a+b=
2
+1-1=
2
(7分)
由余弦定理得cosC=
a2+b2-c2
2ab
=
(a+b)2-2ab-c2
2ab
=
(
2
)
2
-2×
1
3
-1
1
3
=
1
2
(9分)
∵C∈(0,π)∴C=
π
3
(10分)
点评:本题考查坐下来与余弦定理的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案