精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥S-ABCD的底面是边长为1的正方形,则棱SB垂直于底面.

(1)求证:平面SBD⊥平面SAC

(2)若SA与平面SCD所成角的正弦值为,求SB的长.

【答案】(1)证明见解析;(2) 2

【解析】

(1)连结AC,BD,证明ACBD,ACSB,得出AC⊥面SBD,即可证明平面SAC⊥平面SBD

(2)将四棱锥补成正四棱柱ABCD-ASCD,连结AD,作AEADE,连结SE,

证明AE⊥面SCD,得出∠ASESA与平面SCD所成角的平面角,利用直角三角形的边角关系求出SB的长.

(1)证明:连结AC,BD,如图所示;

∵四边形ABCD是正方形,∴ACBD,

SB⊥底面ABCD,∴ACSB,

AC⊥面SBD,

又由ACSAC,∴面SAC⊥面SBD

(2)解:将四棱锥补成正四棱柱ABCD-ASCD,

连结AD,作AEADE,连结SE,如图所示;

SACD,知平面SCD即为平面SCDA,

CD⊥侧面ADDA,∴CDAE,

AEAD,∴AE⊥面SCD,

∴∠ASE即为SA与平面SCD所成角的平面角,

SB=x,

在直角△ABS中,由勾股定理得SA=

在直角△SAE中,=,得AE=

在直角△DAA中,ADAE=ADAA,

=1x

解得x=2x=

SB的长为2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.

)求椭圆的方程;

)设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线轴相交于定点

)在()的条件下,过点的直线与椭圆交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调区间;

(2)当时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上海市普通高中学业水平等级考成绩共分为五等十一级,各等级换算成分数如表所示:

等级

A

B

C

D

E

分数

70

67

64

61

58

55

52

49

46

43

40

上海某高中2018届高三班选考物理学业水平等级考的学生中,有5人取得成绩,其他人的成绩至少是B级及以上,平均分是64分,这个班级选考物理学业水平等级考的人数至少为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行优惠促销,顾客仅可以从以下两种优惠方案中选择一种:方案一:每满200元减50元;方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(:所有小球仅颜色有区别)

(1)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得优惠的概率;

(2)若某顾客选择方案二,请分别计算该顾客获得半价优惠的概率、7折优惠的概率以及8折优惠的概率;

(3)若小明的购物金额为320,你觉得小明应该选取哪个方案,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为,右顶点到左焦点的距离为,直线l:与椭圆交于A,B两点.

求椭圆的方程;

若A为椭圆的上项点,M为AB中点,O为坐标原点,连接OM并延长交椭圆于N,,求k的值.

若原点O到直线l的距离为1,,当时,求的面积S的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的两条渐近线与抛物线的准线分别交于两点.若双曲线的离心率为的面积为为坐标原点,则抛物线的焦点坐标为 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中,底面是边长为的等边三角形,上、下底面的面积之比为,侧面底面,并且.

(1)平面平面,证明:

(2)求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(

A.若数列的极限都存在,且,则数列的极限存在

B.若数列的极限都不存在,则数列的极限也不存在

C.若数列的极限都存在,则数列的极限也存在

D.,若数列的极限存在,则数列的极限也存在

查看答案和解析>>

同步练习册答案