精英家教网 > 高中数学 > 题目详情

【题目】下列命题正确的是(

A.若数列的极限都存在,且,则数列的极限存在

B.若数列的极限都不存在,则数列的极限也不存在

C.若数列的极限都存在,则数列的极限也存在

D.,若数列的极限存在,则数列的极限也存在

【答案】C

【解析】

通过给变量取特殊值,举反例,再利用数列极限的定义和运算,可得选项A,B,D不正确,利用数列极限的运算法则可得C正确.

解:对于选项A,取,则数列的极限都存在,又,则数列的极限不存在,即A错误;

对于选项B,取,则数列的极限都不存在,又,则数列的极限存在,即B错误;

对于选项C,设,则,

同理,即数列的极限也存在,故C正确;

对于选项D,取,则,则数列的极限存在,但数列的极限不存在,即D错误,

即命题正确的是选项C,

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S-ABCD的底面是边长为1的正方形,则棱SB垂直于底面.

(1)求证:平面SBD⊥平面SAC

(2)若SA与平面SCD所成角的正弦值为,求SB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:方程x2+y24x+m20表示圆:q:方程1m0)表示焦点在y轴上的椭圆.

(1)若p为真命题,求实数m的取值范围;

(2)若命题pq有且仅有一个为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于 两点.

(1)求圆的直角坐标方程及弦的长;

(2)动点在圆上(不与 重合),试求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,公差为.

(1)若,求数列的通项公式;

(2)是否存在使成立?若存在,试找出所有满足条件的的值,并求出数列的通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4个不同的红球和6个不同的白球放入同一个袋中,现从中取出4个球.

1)若取出的红球的个数不少于白球的个数,则有多少不同的取法?

2)取出一个红球记2分,取出一个白球记1分,若取出4个球所得总分不少于5分,则有多少种不同取法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中

(1)求的单调减区间;

(2)当时,恒成立,求的取值范围;

(3)设 只有两个零点),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】艾滋病是一种危害性极大的传染病,由感染艾滋病病毒病毒引起,它把人体免疫系统中最重要的CD4T淋巴细胞作为主要攻击目标,使人体丧失免疫功能下表是近八年来我国艾滋病病毒感染人数统计表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代码x

1

2

3

4

5

6

7

8

感染者人数单位:万人

85

请根据该统计表,画出这八年我国艾滋病病毒感染人数的折线图;

请用相关系数说明:能用线性回归模型拟合yx的关系;

建立y关于x的回归方程系数精确到,预测2019年我国艾滋病病毒感染人数.

参考数据:

参考公式:相关系数

回归方程中,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解一款电冰箱的使用时间和市民对这款电冰箱的购买意愿,研究人员对该款电冰箱进行了相应的抽样调查,得到数据的统计图表如下:

购买意愿市民年龄

不愿意购买该款电冰箱

愿意购买该款电冰箱

总计

40岁以上

600

800

40岁以下

400

总计

800

(1)根据图中的数据,估计该款电冰箱使用时间的中位数;

(2)完善表中数据,并据此判断是否有的把握认为“愿意购买该款电冰箱“与“市民年龄”有关;

(3)用频率估计概率,若在该电冰箱的生产线上随机抽取3台,记其中使用时间不低于4年的电冰箱的台数为,求的期望.

附:

查看答案和解析>>

同步练习册答案