精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列的前项和为,公差为.

(1)若,求数列的通项公式;

(2)是否存在使成立?若存在,试找出所有满足条件的的值,并求出数列的通项公式;若不存在,请说明理由.

【答案】(1);(2)详见解析.

【解析】

(1)根据,求出,即可求出结果;

(2)由等差数列的前项和公式和,先得到,再分别取以及,逐一验证即可得出结果.

解:(1)当时,由

解得

所以.

所以数列的通项公式为.

(2)由题可知,

,得,

所以.

时,得不存在;

时,得符合.

此时数列的通项公式为

时,得不符合;

时,得符合,

此时数列的通项公式为

时,得符合.

此时数列的通项公式为

时,得不符合,时,得不符合;

时,得不符合,时,均不符合,

所以存在3组,其解与相应的通项公式分别为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场举行优惠促销,顾客仅可以从以下两种优惠方案中选择一种:方案一:每满200元减50元;方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(:所有小球仅颜色有区别)

(1)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得优惠的概率;

(2)若某顾客选择方案二,请分别计算该顾客获得半价优惠的概率、7折优惠的概率以及8折优惠的概率;

(3)若小明的购物金额为320,你觉得小明应该选取哪个方案,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:

则下列结论正确的是  

A. 与2015年相比,2018年一本达线人数减少

B. 与2015年相比,2018年二本达线人数增加了

C. 2015年与2018年艺体达线人数相同

D. 与2015年相比,2018年不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:

则下列结论正确的是  

A. 与2015年相比,2018年一本达线人数减少

B. 与2015年相比,2018年二本达线人数增加了

C. 2015年与2018年艺体达线人数相同

D. 与2015年相比,2018年不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线Ca0b0)的离心率为,且

1)求双曲线C的方程;

2)已知直线与双曲线C交于不同的两点AB且线段AB的中点在圆上,求m的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(

A.若数列的极限都存在,且,则数列的极限存在

B.若数列的极限都不存在,则数列的极限也不存在

C.若数列的极限都存在,则数列的极限也存在

D.,若数列的极限存在,则数列的极限也存在

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的参数方程为为参数),过点作斜率为的直线与圆交于两点.

(1)若圆心到直线的距离为,求的值;

(2)求线段中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体分别是棱ABBC的中点.

(1)证明四点共面;

(2)直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=lnx+ax2-xx0aR).

(Ⅰ)讨论函数fx)的单调性;

(Ⅱ)求证:当a≤0时,曲线y=fx)上任意一点处的切线与该曲线只有一个公共点.

查看答案和解析>>

同步练习册答案