精英家教网 > 高中数学 > 题目详情
18.如图,在长方体ABCD-A1B1C1D1中,AA1=2AB,AB=BC,则下列结论中正确的是(  ) 
A.BD1∥B1CB.A1D1∥平面AB1CC.BD1⊥ACD.BD1⊥平面AB1C

分析 连接BD,由AC⊥BD,AC⊥DD1,可证AC⊥平面BDD1,利用线面垂直的性质即可证明AC⊥BD1

解答 解:∵如图,连接BD,在长方体ABCD-A1B1C1D1中,AB=BC,
∴AC⊥BD,AC⊥DD1
∵BD∩DD1=D,
∴AC⊥平面BDD1
∵BD1?平面BDD1
∴AC⊥BD1
故选:C.

点评 本题主要考查了直线与平面垂直的判定,直线与平面垂直的性质的应用,考查了空间想象能力和推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.行列式$|{\begin{array}{l}a&b\\ c&d\end{array}}|$(a、b、c、d∈{-1,1,2})所有可能的值中,最小值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正方体ABCD-A1B1C1D1的一个面A1B1C1D1在半径为$\sqrt{3}$的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCD-A1B1C1D1的体积为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD的底面ABCD为菱形,Q是棱PA的中点.
(Ⅰ)求证:PC∥平面BDQ;
(Ⅱ)若PB=PD,求证:平面PAC⊥平面BDQ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知曲线C的方程是x4+y2=1.关于曲线C的几何性质,给出下列三个结论:
①曲线C关于原点对称;
②曲线C关于直线y=x对称;
③曲线C所围成的区域的面积大于π.
其中,所有正确结论的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设命题p:“若$sinα=\frac{1}{2}$,则$α=\frac{π}{6}$”,命题q:“若a>b,则$\frac{1}{a}<\frac{1}{b}$”,则(  )
A.“p∧q”为真命题B.“p∨q”为假命题C.“¬q”为假命题D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}是等比数列,并且a1,a2+1,a3是公差为-3的等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=a2n,记Sn为数列{bn}的前n项和,证明:${S_n}<\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示的封闭区域的边界是由两个关于x轴对称的半圆与截取于同一双曲线的两段曲线组合而成的,其中上半圆所在圆的方程是x2+y2-4y-4=0,双曲线的左右顶点A、B是该圆与x轴的交点,双曲线与该圆的另两个交点是该圆平行于x轴的一条直径的两个端点.
(1)求双曲线的方程;
(2)记双曲线的左、右焦点为F1、F2,试在封闭区域的边界上求点P,使得∠F1PF2是直角.

查看答案和解析>>

同步练习册答案