精英家教网 > 高中数学 > 题目详情
与椭圆C:=1共焦点且过点(1,)的双曲线的标准方程为(  )
A.x2=1B.y2-2x2=1
C.=1D.-x2=1
C
椭圆=1的焦点坐标为(0,-2),(0,2).设双曲线的标准方程为=1(m>0,n>0),则解得m=n=2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录如下:
(1)经判断点在抛物线上,试求出的标准方程;
(2)求抛物线的焦点的坐标并求出椭圆的离心率;
(3)过的焦点直线与椭圆交不同两点且满足,试求出直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q.
(1)求k的取值范围;
(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量共线?如果存在,求k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点P与平面上两定点连线的斜率的积为定值.
(1)试求动点P的轨迹方程C.
(2)设直线与曲线C交于M、N两点,当|MN|=时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,焦距为的椭圆的两个顶点分别为,且与n共线.

(1)求椭圆的标准方程;
(2)若直线与椭圆有两个不同的交
,且原点总在以为直径的圆的内部,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P是双曲线右支上的一点,M,N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为( )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个同心圆,其半径分别为为小圆上的一条定直径,则以大圆的切线为准线,且过两点的抛物线焦点的轨迹方程为(      )(以线段所在直线为轴,其中垂线为轴建立平面直角坐标系)
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆=1(0<b<2)与y轴交于AB两点,点F为该椭圆的一个焦点,则△ABF面积的最大值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆上的一点, 是焦点, 且, 则△的面积是
A.B.C.D.

查看答案和解析>>

同步练习册答案