精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-(
3
2
m+1)x2+2mx(m∈R)

(1)若m=1,讨论函数f(x)的单调性;
(2)若函数g(x)=
1
4
x[f(x)+(
3
2
m+1)x2]+(3-m)lnx
至少有一个极值点,求m的取值范围.
(1)∵f(x)=x3-(
3
2
m+1)x2+2mx(m∈R)

m=1,
∴f′(x)=3x2-5x+2=(3x-2)(x-1),
令f′(x)>0,得x
2
3
,或x>1,
由f′(x)<0,得
2
3
<x<1

∴f(x)在(-∞,
2
3
),(1,+∞)上为增函数,
在(
2
3
,1
)上为减函数.
(2)∵g(x)=
1
4
x4+
1
2
mx2+(3-m)lnx,(x>0)

g(x)=x3+mx+
3-m
x
,x>0

g(x)=
x4+mx2+(3-m)
x
,x>0

令g′(x)=0,得x4+mx2+(3-m)=0(*),
①当△=m2-4(3-m)≤0,
即-6≤m≤2时,
方程(*)无解,此时g(x)无极值点.
②当△=m2-4(3-m)>0,
即m<-6或m>2时,
(i)当3-m<0,即m>3时,方程(*)有一正、一负两个根,
∵t=x2,∴方程x4+mx2+(3-m)=0只有一个正数解,
此时g(x)只有一个极值点.
(ii)当
m<-6,或m>2
-m>0
3-m>0
时,即m<-6时,
方程(*)有两个相异正根,
∵t=x2,∴方程x4+mx2+(3-m)=0恰有两个相异正数解,
此时g(x)有两个极值点,
由①②知,g(x)至少一个极值点时,m的取值范围是m<-6或m>3.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案