精英家教网 > 高中数学 > 题目详情
4.已知$α∈(\frac{3π}{2},2π)$,cosα=$\frac{4}{5}$,则cos(α+$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$.

分析 由同角三角函数的基本关系可得sinα,代入两角和的余弦公式可得.

解答 解:∵$α∈(\frac{3π}{2},2π)$,cosα=$\frac{4}{5}$,
∴sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{3}{5}$,
∴cos(α+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$cosα-$\frac{\sqrt{2}}{2}$sinα
=$\frac{\sqrt{2}}{2}×\frac{4}{5}-\frac{\sqrt{2}}{2}×(-\frac{3}{5})$=$\frac{7\sqrt{2}}{10}$
故答案为:$\frac{7\sqrt{2}}{10}$.

点评 本题考查两角和与差的余弦公式,涉及同角三角函数的基本关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知$cosα=\frac{{\sqrt{5}}}{5}$,α是第四象限角,且tan(α+β)=1,则tanβ的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在四边形ABCD中,AB=$\sqrt{3}$,CD=2,∠BAD=135°,∠BCD=60°,∠ADB=30°.
(1)求BC边的长;
(2)求∠ABC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知fn(x)=(1+2x)(1+22x)…(1+2nx)(n≥2,n∈N*).
(1)设fn(x)展开式中含x项的系数为an,求an
(2)设fn(x)展开式中含x2项的系数为bn,求证:bn+1=bn+2n+1an
(3)是否存在常数a,b,使bn=$\frac{8}{3}$(2n-1-1)(2na+b)对一切n≥2且n∈N*恒成立?若不存在,说明理由;若存在,求出a,b的值,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设向量$\overrightarrow{OA}$=(a,cos2x),$\overrightarrow{OB}$=(1+sin2x,1),x∈R,函数f(x)=$|\begin{array}{l}{\overrightarrow{OA}}\\{\;}\end{array}|$•$|\begin{array}{l}{\overrightarrow{OB}}\\{\;}\end{array}|$cos∠AOB
(Ⅰ)当y=f(x)的图象经过点($\frac{π}{4}$,2)时,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若x为锐角,当sin2x=sin($\frac{π}{4}$+α)•sin($\frac{π}{4}$-α)+$\frac{1-cos2α}{2}$时,求△OAB的面积;
(Ⅲ)在(Ⅰ)的条件下,记函数h(x)=f(x+t)(其中实数t为常数,且0<t<π).若h(x)是偶函数,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若“x∈(1,+∞)”是“x∈(a,+∞)”的充分不必要条件,则实数a的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某学校高三有1800名学生,高二有1500名学生,高一有1200名学生,现采用分层抽样的方法抽取一个容量为150的样本,则应在高一抽取40人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求使不等式$|{\frac{3n}{2n+1}-\frac{3}{2}}|<\frac{1}{100}$成立的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知△ABC的三边满足(a+b+c)(a+b-c)=($\sqrt{3}$+2)ab,则角C等于(  )
A.15°B.30°C.45°D.60°

查看答案和解析>>

同步练习册答案