精英家教网 > 高中数学 > 题目详情
16.某学校高三有1800名学生,高二有1500名学生,高一有1200名学生,现采用分层抽样的方法抽取一个容量为150的样本,则应在高一抽取40人.

分析 根据分层抽样的定义建立比例关系即可得到结论.

解答 解:由分层抽样的定义得在高一抽取$\frac{1200}{1800+1500+1200}$×$150=\frac{12}{45}×150$=40人,
故答案为:40

点评 本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示,假设现在青蛙在A叶上,则跳三次之后停在A叶上的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.A、B、C、D、E、F共6各同学排成一排,其中A、B之间必须排两个同学的排法种数共有144种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$α∈(\frac{3π}{2},2π)$,cosα=$\frac{4}{5}$,则cos(α+$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义在区间[a,b]上的函数f(x)=$\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$cosx的值域是[-$\frac{1}{2}$,1],则b-a的最大值是$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.辛集中学高二学生要用鲜花布置花圃中ABCDE五个不同区域,要求同一区域上用同一种颜色的鲜花,相邻区域使用不同颜色的鲜花.现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择.恰有两个区域用红色鲜花的概率(  )
A.$\frac{8}{35}$B.$\frac{6}{35}$C.$\frac{4}{35}$D.$\frac{2}{35}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.现有3本不同的数学书,2本不同的物理书和1本化学书,全部排放在书架的同一层,要求使数学书都相邻且物理书不相邻,一共有72种不同的排法.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=0处的切线为l:4x+y-5=0,若x=-2时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数 f(x)=$\left\{{\begin{array}{l}{{{(x-1)}^3}(x≥1)}\\{{{(1-x)}^3}({x<1})}\end{array}}$,若关于x的不等式f(x)<f(ax+1)的解集中有且仅有两个整数,则实数a的取值范围为(  )
A.$(-\frac{2}{3},1)$B.$[{-\frac{2}{3},-\frac{1}{2}})∪({\frac{1}{2},\frac{2}{3}}]$C.$({-\frac{2}{3},\frac{2}{3}})$D.$({-\frac{2}{3},\frac{1}{3}})∪(\frac{1}{2},\frac{2}{3})$

查看答案和解析>>

同步练习册答案