精英家教网 > 高中数学 > 题目详情
已知定点(1,0)和定圆B:动圆P和定圆B相切并过A点,
(1)  求动圆P的圆心P的轨迹C的方程。
(2)  设Q是轨迹C上任意一点,求的最大值。
解:(1)设,则,
所以点P的轨迹是以A,B为焦点,长轴长为4的椭圆
所以点P的轨迹方程是
(2)设

当且仅当取“=”,的最大值是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

抛物线y=4x2的焦点坐标是(   )
A.(1,0)B.(0,1)C.(,0)D.(0,)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的方程为,点分别为其左、右顶点,点分别为其左、右焦点,以点为圆心,为半径作圆;以点为圆心,为半径作圆;若直线被圆和圆截得的弦长之比为
(1)求椭圆的离心率;
(2)己知,问是否存在点,使得过点有无数条直线被圆和圆截得的弦长之比为;若存在,请求出所有的点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题満分12分)
已知一条曲线上的每个点M到A(1,0)的距离减去它到y轴的距离差都是1.
(1)求曲线的方程;
(2)讨论直线y=kx+1(k∈R)与曲线的公共点个数

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知曲线C上任意一点M到点F(0,1)的距离比它到直线 的距离小1.
(1)求曲线C的方程;
(2)过点P(2,2)的直线与曲线C交于A、B两点,设当△AOB的面积为时(O为坐标原点),求的值.
(3)若函数在[1,3]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

 上有一点 ,它到的距离与它到焦点的距离之和最小,则点的坐标是(     )
A.(-2,1)B.(1,2)C.(2,1) D.(-1,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)已知曲线上的动点满足到点的距离比到直线 的距离小
(1)求曲线的方程;
(2)动点在直线 上,过点作曲线的切线,切点分别为
(ⅰ)求证:直线恒过一定点,并求出该定点的坐标;
(ⅱ)在直线上是否存在一点,使得为等边三角形(点也在直线上)?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)从圆:外一动点向圆引一条切线,切点为,且(为坐标原点),求的最小值和取得最小值时点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆与x轴相切,两个焦点坐标为F1(1,1),F2(5,2),则其长轴长为      

查看答案和解析>>

同步练习册答案