精英家教网 > 高中数学 > 题目详情

【题目】 设命题p:函数y在定义域上为减函数;命题qab(0,+∞),当ab=1时,=3.以下说法正确的是(  )

A. pq为真B. pq为真

C. pqD. pq均假

【答案】D

【解析】

根据反比例函数的单调性知,它在定义域上没有单调性,所以命题p是假命题;根据a+b=1b=1-a,带入=3,看能否解出a,经计算解不出a,所以命题q是假命题,即p,q均假,所以D是正确的.

函数y分别在(-∞,0),(0,+∞) 上是减函数,在定义域{x|x≠0}上不具有单调性,

命题p是假命题;

ab=1得b=1-a,代入=3并整理得3a2-3a+1=0,∴Δ=9-12<0,∴该方程无解,

即不存在ab(0,+∞),当ab=1时,=3,

命题q是假命题,

pq均假,pq为假,pq为假.故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面几何中,有边长为的正三角形内任意点到三边距离之和为定值.类比上述命题,棱长为的正四面体内任一点到四个面的距离之和为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,已知直线的参数方程是 (m>0,t为参数),曲线的极坐标方程为

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线轴交于点,与曲线交于点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为,乙每次投中的概率为,每人分别进行三次投篮.

(I)记甲投中的次数为,求的分布列及数学期望

(Ⅱ)求乙至多投中2次的概率;

(Ⅲ)求乙恰好比甲多投进2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学每年暑假举行“学科思维讲座”活动每场讲座结束时,所有听讲者都要填写一份问卷调查.2017年暑假某一天五场讲座收到的问卷分数情况如下表:

用分层抽样的方法从这一天的所有问卷中抽取300份进行统计,结果如下表:

(1)估计这次讲座活动的总体满意率;

(2)求听数学讲座的甲某的调查问卷被选中的概率;

(3)若想从调查问卷被选中且填写不满意的人中再随机选出5人进行家访求这5人中选择的是理综讲座的人数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)若函数的图象在处的切线斜率为1,求实数的值;

(Ⅱ)求函数的单调区间;

(Ⅲ)若函数在[1,2]上是减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为( )

A. 15 B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论的极值点的个数;

,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,侧面PAD是正三角形,底面ABCD是菱形,且∠ABC=60°,M为PC的中点.

(1)求证:PC⊥AD.

(2)在棱PB上是否存在一点Q,使得A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案