精英家教网 > 高中数学 > 题目详情
17.已知非空集合A={x|a<x<2a+3},B={x|0<x<1}
(1)若a=-$\frac{1}{2}$,求 A∩B
(2)若A∩B=∅,求实数a的取值范围.

分析 (1)把a的值代入确定出A,求出A与B的交集即可;
(2)根据A与B的交集为空集,确定出a的范围即可.

解答 解:(1)把a=-$\frac{1}{2}$代入得:A={x|-$\frac{1}{2}$<x<2},
∵B={x|0<x<1},
∴A∩B={x|0<x<1};
(2)∵A∩B=∅,
∴A=∅或2a+3≤0或a≥1,
解得:a≤-3或a≤-$\frac{3}{2}$或a≥1,
则a的范围是a≤-$\frac{3}{2}$或a≥1.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设m个正数a1,a2,…,am(m≥4,m∈N*)依次围成一个圆圈.其中a1,a2,a3,…ak-1,ak(k<m,k∈N*)是公差为d的等差数列,而a1,am,am-1,…,ak+1,ak是公比为2的等比数列.
(1)若a1=d=2,k=8,求数列a1,a2,…,am的所有项的和Sm
(2)若a1=d=2,m<2015,求m的最大值;
(3)是否存在正整数k,满足a1+a2+…+ak-1+ak=3(ak+1+ak+2+…+am-1+am)?若存在,求出k值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱台ABO-A1B1O1中,侧面AOO1A1与侧面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1,OB=3,O1B1=1,OO1=$\sqrt{3}$.
(1)证明:AB1⊥BO1
(2)求直线AO1与平面AOB1所成的角的正切值;
(3)求二面角O-AB1-O1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx-x+$\frac{a}{x}$+1(a∈R).
(1)讨论f(x)的单调性与极值点的个数;
(2)当a=0时,关于x的方程f(x)=m(m∈R)有2个不同的实数根x1,x2,证明:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某几何体三视图如图所示,则这个几何体的体积为$\frac{4\sqrt{3}}{3}$,外接球的体积为$\frac{28\sqrt{21}}{27}$π.

查看答案和解析>>

科目:高中数学 来源:2017届安徽合肥一中高三上学期月考一数学(文)试卷(解析版) 题型:解答题

已知函数,函数有相同极值点.

(1)求函数的最大值;

(2)求实数的值;

(3)若,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2017届安徽合肥一中高三上学期月考一数学(文)试卷(解析版) 题型:填空题

已知函数上的增函数,则实数的取值范围是 .

查看答案和解析>>

科目:高中数学 来源:2017届安徽合肥一中高三上学期月考一数学(理)试卷(解析版) 题型:解答题

已知函数.

(1)若,求函数处切线方程;

(2)讨论函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北正定中学高二上月考一数学(文)试卷(解析版) 题型:选择题

设集合,则等于( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案