精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x2+2x-2)•ex,x∈R,e为自然对数的底数.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若方程f(x)=m有两个不同的实数根,试求实数m的取值范围.
考点:利用导数研究函数的极值
专题:导数的综合应用
分析:(Ⅰ)由已知得f'(x)=(x2+4x)•ex,令f'(x)=0,由此利用导数性质能求出函数f(x)的极值.
(Ⅱ)作出大致图象,问题“方程f(x)=m有两个不同的实数根”转化为函数f(x)的图象与y=m的图象有两个不同的交点,由此能求出实数m的取值范围.
解答: 解:(Ⅰ)∵f(x)=(x2+2x-2)•ex,x∈R,
∴f'(x)=(2x+2)•ex+(x2+2x-2)•ex=(x2+4x)•ex…(2分)
令f'(x)=0,解得x1=-4或x2=0,列表如下…(4分)
x(-∞,-4)-4(-4,0)0(0,+∞)
f'(x)+0-0+
f(x)递增极大递减极小递增
由表可得当x=-4时,函数f(x)有极大值f(-4)=6e-4
当x=0时,函数f(x)有极小值f(0)=-2;…(8分)
(Ⅱ)由(Ⅰ)及当x→-∞,f(x)→0;x→+∞,f(x)→+∞
大致图象为如图(大致即可)
问题“方程f(x)=m有两个不同的实数根”转化为函数f(x)的图象与y=m的图象有两个不同的交点,…(10分)
故实数m的取值范围为[-2,0]∪{6e-4}.…(13分)
点评:本题考查函数的单调区间的求法,考查实数的极值的求法,解题时要认真审题,注意导数性质和分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是偶函数,且在[0,+∞)上是减函数,则不等式f(lgx)>f(1)的解集是(  )
A、(
1
10
,1)
B、(
1
10
,10)
C、(0,
1
10
)∪(1,+∞)
D、(0,1)∪(10,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+x2+ax
(1)当a=-3时,求函数y=f(x)的极值点;
(2)当a=-4时,求方程f(x)+x2=0在(1,+∞)上的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在多面体EFABCD中,底面正方形ABCD的两条对角线AC与BD相交于点O,且AF⊥平面ABCD,DE∥AF,AB=DE=2,AF=1.
(1)在平面ADEF内是否存在一点M,使OM∥平面CDE?若存在,试确定点M的位置,若不存在,请说明理由;
(2)求直线EC与平面BDE所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>b>0,试问a2+
16
b(a-b)
是否存在最小值,若存在,求出最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数fa(x)=ln(1+ax)-x,(a>0,x>-
1
a
)的最大值可记为g(a)
(Ⅰ)求关于a的函数g(a)的解析式;
(Ⅱ)已知t∈N*,当a≥t时,g(a)≤2fa(1)+lnt恒成立,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+5,在曲线y=f(x)上的点P(1,f(1))处的切线与直线y=3x+2平行.
(1)若函数y=f(x)在x=-2时取得极值,求a,b的值;
(2)在(1)的条件下求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:mx2-4x+2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
lnx
x2
,g(x)=x2
(1)求f(x)的极大值;
(2)求证:12elnn!≤(n2+n)(2n+1)(n∈N*
(3)当方程f(x)-
a
2e
=0(a∈R+)有唯一解时,试探究函数F(x)=x(x2f′(x)+k)-a-
k
x
(k∈R)与g(x)的图象在其公共点处是否存在公切线,若存在,研究k的值的个数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案