精英家教网 > 高中数学 > 题目详情
12.若函数y=$\frac{1}{2}$sin(2x+θ),θ∈(π,2π)的图象关于y轴对称,则θ的值为$\frac{π}{2}$.

分析 由题意可得该函数为偶函数,从而求得θ的值.

解答 解:∵函数y=$\frac{1}{2}$sin(2x+θ),θ∈(π,2π)的图象关于y轴对称,故该函数为偶函数,
故θ=$\frac{π}{2}$,
故答案为:$\frac{π}{2}$.

点评 本题主要考查正弦函数、余弦函数的奇偶性以及它们的图象的对称性,诱导公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),有Cn+1m种取法.在这Cn+1m种取法中,可分两类:一类是取出的m个球全部为白球,有C10Cnm种取法;另一类是取出1个黑球、m-1个白球,有C11Cnm-1种取法,所以有式子:C10Cnm+C11Cnm-1=Cn+1m成立.根据上述思想方法化简下列式子:Cnm+Ck1•Cnm-1+Ck2•Cnm-2+…+Ckk-1•Cnm-k+1+Cnm-k=${C}_{n+k}^{m}$(1≤k<m≤n,k,m,n∈N).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合A={(x,y)|x,y∈R},若x,y∈A,已知x=(x1,y1),y=(x2,y2),定义集合A中元素间的运算x*y,称为“*”运算,此运算满足以下运算规律:
①任意x,y∈A有x*y=y*x
②任意x,y,z∈A有(x+y)*z=x*z+y*z(其中x+y=(x1+x2,y1+y2))
③任意x,y∈A,a∈R有(ax)*y=a(x*y)
④任意x∈A有x*x≥0,且x*x=0成立的充分必要条件是x=(0,0)为向量,如果x=(x1,y1),y=(x2,y2),那么下列运算属于“*”正确运算的是(  )
A.x*y=x1y1+2x2y2B.x*y=x1y1-x2y2C.x*y=x1y1+x2y2+1D.x*y=2x1x2+y1y2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若(2x+$\sqrt{3}$)3=a0+a1x+a2x2+a3x3,则(a0+a22-(a1+a32的值为(  )
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.写出($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)6的展开式的第3项,以及常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.等比数列{an}的前n项和为Sn=32-n-t(n∈N*),则实数t的值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.单位向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,$\overrightarrow{c}$=m$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{d}$=2$\overrightarrow{a}$-m$\overrightarrow{b}$,且$\overrightarrow{c}$⊥$\overrightarrow{d}$,则m的值是(  )
A.0B.1或-2C.-1或2D.-1+$\sqrt{3}$或-1-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),k为何值时下列各式成立?
(1)(k$\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-3$\overrightarrow{b}$);
(2)(k$\overrightarrow{a}$+$\overrightarrow{b}$)∥($\overrightarrow{a}$-3$\overrightarrow{b}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列表格中,不是某个随机变量的分布列的是(  )
A.
X-202 4
 P 0.5 0.20.3 0
B.
 X 0 1 2
 P 0.7 0.150.15
C.
 X 1
 P $-\frac{1}{3}$ $\frac{1}{2}$$\frac{2}{3}$
D.
 X 1 2 3
 P lg1 lg2lg5

查看答案和解析>>

同步练习册答案