精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)是定义在(-∞,+∞)上的奇函数,若对于任意的实数x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2 017)+f(2 018)的值为(  )
A.-1B.-2C.2D.1

分析 利用函数的奇偶性以及函数的周期性转化求解即可.

解答 解:因为f(x)是奇函数,且周期为2,所以f(-2 017)+f(2 018)=-f(2 017)+f(2 018)=-f(1)+f(0).
当x∈[0,2)时,f(x)=log2(x+1),
所以f(-2 017)+f(2 018)=-1+0=-1.
故选:A.

点评 本题考查函数的奇偶性以及函数的周期性的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.复数z=m(m-1)+(m-1)i(m∈R).
(Ⅰ)实数m为何值时,复数z为纯虚数;    
(Ⅱ)若m=2,计算复数$\overline{z}$-$\frac{z}{1+i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设f(x)=ax-4x3,对?x∈[-1,1]总有f(x)≤1,则a的取值范围是{3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an},a4=28,且满足$\frac{{a}_{n+1}+{a}_{n}-1}{{a}_{n+1}-{a}_{n}+1}$=n.
(1)求a1,a2,a3的值;
(2)试猜想数列{an}的通项公式,并证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某茶楼有四类茶饮,假设为顾客准备泡茶工具所需的时间相互独立,且都是整数(单位:分钟).现统计该茶楼服务员以往为100位顾客准备泡茶工具所需的时间t,结果如表所示.
类别铁观音龙井金骏眉大红袍
顾客数(人)20304010
时间t(分钟/人)2346
注:服务员在准备泡茶工具时的间隔时间忽略不计,并将频率视为概率.
(1)求服务员恰好在第6分钟开始准备第三位顾客的泡茶工具的概率;
(2)用X表示至第4分钟末服务员已准备好了泡茶工具的顾客数,求X的分布列及均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法:
①分类变量A与B的随机变量x2越大,说明“A与B有关系”的可信度越大.
②以模型y=cekx去拟合一组数据时,为了求出回归方程,设z=lny,将其变换后得到线性方程z=0.3x+4,则c,k的值分别是e4和0.3.
③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y=a+bx中,b=2,$\overline x=1,\overline y=3$,则a=1.正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{lnx}{x}$,g(x)=$\frac{1}{2}a{x^2}-aex(a∈R,e$是自然对数的底数).
(1)求函数f(x)的单调区间;
(2)若h(x)=f(x)-g(x),当a≥0时,求函数h(x)的最大值;
(3)若m>n>0,且mn=nm,求证:mn>e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的首项为2,且数列{an}满足${a_{n+1}}=\frac{{{a_n}-1}}{{{a_n}+1}}$,设数列{an}的前n项和为Sn,则S2017=(  )
A.-586B.-588C.-590D.-504

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x+$\frac{t}{x}$(x>0)过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N,设g(t)=|MN|,若对任意的正整数n,在区间[2,n+$\frac{64}{n}$]内,若存在m+1个数a1,a2,…am+1,使得不等式g(a1)+g(a2)+…g(am)<g(am+1),则m的最大值为(  )
A.5B.6C.7D.8

查看答案和解析>>

同步练习册答案