精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\frac{lnx}{x}$,g(x)=$\frac{1}{2}a{x^2}-aex(a∈R,e$是自然对数的底数).
(1)求函数f(x)的单调区间;
(2)若h(x)=f(x)-g(x),当a≥0时,求函数h(x)的最大值;
(3)若m>n>0,且mn=nm,求证:mn>e2

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)求出函数的导数,得到函数的单调区间,从而求出h(x)的最大值即可;
(3)得到f(m)=f(n),根据函数的单调性问题转化为证明$m>\frac{e^2}{n}>e$,即证$\frac{lnn}{n}<\frac{n(2-lnn)}{e^2}$,令G(x)=e2lnx-2x2+x2lnx(1<x<e),根据函数的单调性证明即可.

解答 解:(1)∵f(x)的定义域为(0,+∞),且$f'(x)=\frac{1-lnx}{x^2}$,
令f'(x)>0⇒0<x<e,f'(x)<0⇒x>e,
∴f(x)在(0,e)上单调递增,在(e,+∞)上单调递减.
(2)∵$h(x)=\frac{lnx}{x}-\frac{1}{2}a{x^2}+aex(x>0)$,∴$h'(x)=\frac{1-lnx}{x^2}-a(x-e)$,
当x>e时,$\frac{1-lnx}{x^2}<0,x-e>0$,∵a≥0,∴-a(x-e)≤0,∴h'(x)<0,
当0<x<e时,$\frac{1-lnx}{x^2}>0,x-e<0,a≥0$,∴h'(x)>0,
∴h(x)在(0,e)上单调递增,在(e,+∞)上单调递减,
∴$h{(x)_{max}}=h(e)=\frac{1}{e}+\frac{1}{2}a{e^2}$.
(3)∵m>n>0,mn=nm,∴nlnm=mlnn,
∴$\frac{lnm}{m}=\frac{lnn}{n}$即f(m)=f(n).
由(1)知 f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,
且f(1)=0,则1<n<e<m,
要证mn>e2,即证$m>\frac{e^2}{n}>e$,即证$f(m)<f(\frac{e^2}{n})$,即证$f(n)<f(\frac{e^2}{n})$,
即证$\frac{lnn}{n}<\frac{n(2-lnn)}{e^2}$,由于1<n<e,0<lnn<1,即证e2lnn<2n2-n2lnn.
令G(x)=e2lnx-2x2+x2lnx(1<x<e),
$G'(x)=\frac{e^2}{x}-4x+2xlnx+x=(\frac{e^2}{x}-x)+2x(lnx-1)$=$\frac{(e+x)(e-x)}{x}+2x(lnx-1)$,
∵1<x<e,∴G'(x)>0恒成立,∴G(x)在(1,e)递增,
∴G(x)<G(e)=0在x∈(1,e)恒成立,
∴原不等式成立.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.自2016年下半年起六安市区商品房价不断上涨,为了调查研究六安城区居民对六安商品房价格承受情况,寒假期间小明在六安市区不同小区分别对50户居民家庭进行了抽查,并统计出这50户家庭对商品房的承受价格(单位:元/平方),将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组(单位:元/平方),并作出频率分布直方图如图:
(Ⅰ)试根据频率分布直方图估计出这50户家庭对商品房的承受价格平均值(单位:元/平方);
(Ⅱ)为了作进一步调查研究,小明准备从承受能力超过4000元/平方的居民中随机抽出2户进行再调查,设抽出承受能力超过8000元/平方的居民为ξ户,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的标准差为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在(-∞,+∞)上的奇函数,若对于任意的实数x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2 017)+f(2 018)的值为(  )
A.-1B.-2C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x,y满足约束条件$\left\{\begin{array}{l}y≥2|x|\\ x+y-1≤0\end{array}\right.$,若z=y-ax(a>0)的最大值为3,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若双曲线C的一条渐近线为x+2y=0,且双曲线与抛物线x2=y的准线仅有一个公共点,则此双曲线C的标准方程为$\frac{{y}^{2}}{\frac{1}{16}}$-$\frac{{x}^{2}}{\frac{1}{4}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=ex-1-a(x+1)(x≥1),g(x)=(x-1)lnx,其中e为自然对数的底数.
(1)若f(x)≥0恒成立,求实数a的取值范围;
(2)若在(1)的条件下,当a取最大值时,求证:f(x)≥g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将函数f(x)=sin(2x+$\frac{π}{3}$)的图象向右平移m个单位(m>0),若所得图象对应的函数为偶函数,则m的最小值是$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.i是虚数单位,a,b∈R,若$\frac{a+3i}{1+i}$=bi,则a-b=-6.

查看答案和解析>>

同步练习册答案