精英家教网 > 高中数学 > 题目详情
17.已知x,y满足约束条件$\left\{\begin{array}{l}y≥2|x|\\ x+y-1≤0\end{array}\right.$,若z=y-ax(a>0)的最大值为3,则实数a的值为1.

分析 作出x,y满足约束条件$\left\{\begin{array}{l}y≥2|x|\\ x+y-1≤0\end{array}\right.$的图象,由图象判断出最优解,令目标函数值为3,列出a的方程,求解即可.

解答 解:由题意x,y满足约束条件$\left\{\begin{array}{l}y≥2|x|\\ x+y-1≤0\end{array}\right.$,的图象如图:
目标函数z=y-ax(a>0)的最大值为3,
从图象上知,
若函数z=y-ax(a>0)的最大值为3,最优解是A(-1,2),
故有2-(-1)×a=3,
则a=1,
故答案为:1.

点评 本题考查简单线性规划的应用及不等式的应用,解决本题,关键是根据线性规划的知识判断出取最值时的位置,即最优解,由此得到参数的方程,再构造出积为定值的形式求出真数的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设G为等边△ABC的重心,过G作直线l分别交AB,AC(不与端点重合)于P,Q,若$\overrightarrow{AP}=λ\overrightarrow{AB}$,$\overrightarrow{AQ}=μ\overrightarrow{AC}$,若△PAG与△QAG的面积之比为$\frac{2}{3}$,则μ=(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=|x-2|-kx+1有两个零点,则实数k的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(1,2)C.(2,+∞)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某茶楼有四类茶饮,假设为顾客准备泡茶工具所需的时间相互独立,且都是整数(单位:分钟).现统计该茶楼服务员以往为100位顾客准备泡茶工具所需的时间t,结果如表所示.
类别铁观音龙井金骏眉大红袍
顾客数(人)20304010
时间t(分钟/人)2346
注:服务员在准备泡茶工具时的间隔时间忽略不计,并将频率视为概率.
(1)求服务员恰好在第6分钟开始准备第三位顾客的泡茶工具的概率;
(2)用X表示至第4分钟末服务员已准备好了泡茶工具的顾客数,求X的分布列及均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过点A(2,3)和点B(2,-3)的直线方程是(  )
A.x+2=0B.x-2=0C.y+2=0D.y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{lnx}{x}$,g(x)=$\frac{1}{2}a{x^2}-aex(a∈R,e$是自然对数的底数).
(1)求函数f(x)的单调区间;
(2)若h(x)=f(x)-g(x),当a≥0时,求函数h(x)的最大值;
(3)若m>n>0,且mn=nm,求证:mn>e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.M是抛物线y=4x2+1上的一个动点,且点M是线段OP的中点(O为原点),P的轨迹方程为y=2x2+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.观察下列等式,猜想一个一般性的结论,并用数学归纳法证明.
1-x2=(1-x)(1+x),
1-x3=(1-x)(1+x+x2),
1-x4=(1-x)(1+x+x2+x3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.i是虚数单位,$\frac{2+i}{1+2i}$等于(  )
A.$\frac{3}{5}$iB.-$\frac{3}{5}$iC.$\frac{4}{5}$+$\frac{3}{5}$iD.$\frac{4}{5}$-$\frac{3}{5}$i

查看答案和解析>>

同步练习册答案