精英家教网 > 高中数学 > 题目详情
1.已知x,y满足$\left\{\begin{array}{l}2x+y+4≤0\\{(x+2)^2}+{(y+1)^2}≤1\end{array}\right.$,则x2+y2的取值范围是[$\frac{16}{5}$,6+2$\sqrt{5}$].

分析 首先画出x,y满足的平面区域,结合x2+y2的几何意义求范围.

解答 解:由题意,x,y满足的平面区域如图阴影部分,则在阴影部分(包括边界)的点中到原点距离,
最小值为原点到直线的距离为:$\frac{4}{\sqrt{5}}=\frac{4\sqrt{5}}{5}$;
最大值为$\sqrt{(-2)^{2}+(-1)^{2}}+1$=1+$\sqrt{5}$,
所以x2+y2的取值范围是[$\frac{16}{5}$,6+2$\sqrt{5}$].
故答案为:[$\frac{16}{5}$,6+2$\sqrt{5}$].

点评 本题考查了线性规划的运用求两个变量的代数式的值的范围;关键正确画出不等式组表示的平面区域,利用x2+y2的几何意义求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.不等式|x|>$\frac{2}{x-1}$的解集为{x|x<0或0<x<1 或x>2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图所示,正方体ABCD-A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′分别交于M,N两点,设BM=x,x∈[0,1],给出以下四个结论:
①平面MENF⊥平面BDD′B′;
②直线AC∥平面MENF始终成立;
③四边形MENF周长L=f(x),x∈[0,1]是单调函数;
④四棱锥C′-MENF的体积V=h(x)为常数;
以上结论正确的是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下表为某班5位同学身高x(单位:cm)与体重y(单位kg)的数据,
身高170171166178160
体重7580708565
若两个量间的回归直线方程为$\widehat{y}$=1.16x+a,则a的值为(  )
A.-122.2B.-121.04C.-91D.-92.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.a=$\frac{1}{2}$cos6°-$\frac{\sqrt{3}}{2}$sin6°,b=2sin13°cos13°,c=$\sqrt{\frac{1-cos50°}{2}}$,则(  )
A.a<c<bB.a<b<cC.a>b>cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△ABC的内角A、B、C所对的边为a、b、c,则“ab>c2”是“C<$\frac{π}{3}$”的充分非必要条件.(填“充分非必要”、“必要非充分”、“充要”、“既不充分又不必要”中的一种).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知“x>k”是“$\frac{2-x}{x+1}$<0”的充分不必要条件,则k的取值范围是(  )
A.[2,+∞)B.[1,+∞)C.(-1,+∞)D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等差数列{an}中,首项a1>0,公差d≠0,前n项和为Sn(n∈N*).有下列命题
①若S3=S11,则必有S14=0;    
②若S3=S11,则必有S7是Sn中最大的项;
③若S7>S8,则必有S8>S9;    
④若S7>S8,则必有S6>S9
其中正确的命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a>b>c且a+b+c=0,则下列不等式恒成立的是(  )
A.a2>b2>c2B.a|b|>c|b|C.ac>bcD.ab>ac

查看答案和解析>>

同步练习册答案