精英家教网 > 高中数学 > 题目详情

【题目】一个小球放入一长方形容器内,且与有公共顶点的三个面相接触,若小球上一点到这三个面的距离分别为455,则该小球的半径是_____.

【答案】311.

【解析】

根据已知小球的球心到三个接触面的距离等于小球半径,小球上一点到这三个面的距离分别为455,若以三个面的交点为坐标原点,分别以其中两个面的交线为坐标轴建立空间直角坐标系,球心和小球上的点的坐标可知,,利用空间两点间的距离公式,即可求解.

如下图,设长方体的三个面公共点为,以

所在直线分别为轴建立空间直角坐标系,

设小球的半径为,小球与共点的三个面相接触,

则球心,又因为小球上一点到这三个面的距离分别为455

所以点坐标为

整理得,解得.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当a=1时,求函数的单调区间;

2)若上恒成立,求实数a的取值范围;

3)是否存在实数a,使函数的最小值是3?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数处的切线方程为,函数.

(1)求函数的解析式;

(2)求函数的极值;

(3)设表示中的最小值),若上恰有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,过点的直线与原点的距离为.

1)求椭圆方程;

2)若直线与椭圆交于两点,试求面积的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是菱形,中点,,平面平面.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个顶点分别为A(﹣30),B21),C(﹣23),试求:

1)边AC所在直线的方程;

2BC边上的中线AD所在直线的方程;

3BC边上的高AE所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分,()小问6分,()小问6分)一家公司计划生产某种小型产品的月固定成本为万元,每生产万件需要再投入万元.设该公司一个月内生产该小型产品万件并全部销售完,每万件的销售收入为万元,且每万件国家给予补助万元. 为自然对数的底数,是一个常数.

)写出月利润(万元)关于月产量(万件)的函数解析式;

)当月生产量在万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件). (注:月利润=月销售收入+月国家补助-月总成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点轴上,中心在坐标原点,长轴长为4,短轴长为.

1)求椭圆的标准方程;

2)是否存在过的直线,使得直线与椭圆交于?若存在,请求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案