【题目】已知△ABC的三个顶点分别为A(﹣3,0),B(2,1),C(﹣2,3),试求:
(1)边AC所在直线的方程;
(2)BC边上的中线AD所在直线的方程;
(3)BC边上的高AE所在直线的方程.
科目:高中数学 来源: 题型:
【题目】某人承揽一项业务,需做文字标牌4个,绘画标牌5个,现有两种规格的原料,甲种规格每张3m2,可做文字标牌1个,绘画标牌2个,乙种规格每张2m2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张,才能使总的用料面积最小?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,己知圆
,且圆
被直线
截得的弦长为2.
(1)求圆
的标准方程;
(2)若圆
的切线
在
轴和
轴上的截距相等,求切线
的方程;
(3)若圆
上存在点
,由点
向圆
引一条切线,切点为
,且满足
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某调研机构,对本地
岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,结果显示,有
人为“低碳族”,该
人的年龄情况对应的频率分布直方图如图.
![]()
(1)根据频率分布直方图,估计这
名“低碳族”年龄的平均值,中位数;
(2)若在“低碳族”且年龄在
、
的两组人群中,用分层抽样的方法抽取
人,试估算每个年龄段应各抽取多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(其中
为参数)曲线
的普通方程为
,以坐标原点为极点,以
轴正半轴为极轴建立极坐标系.
(1)求曲线
和曲线
的极坐标方程;
(2)射线
:
依次与曲线
和曲线
交于
、
两点,射线
:
依次与曲线
和曲线
交于
、
两点,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点P到两定点M(﹣3,0),N(3,0)的距离满足|PM|=2|PN|.
(1)求证:点P的轨迹为圆;
(2)记(1)中轨迹为⊙C,过定点(0,1)的直线l与⊙C交于A,B两点,求△ABC面积的最大值,并求此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为
,过点
的直线l的参数方程为
(为参数),直线l与曲线C交于M、N两点。
(1)写出直线l的普通方程和曲线C的直角坐标方程:
(2)若
成等比数列,求a的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠ADC=60°,AD=AC=2,O为AC的中点,PO⊥平面ABCD且PO=4,M为PD的中点.
![]()
(1)证明:MO∥平面PAB;
(2)求直线AM与平面ABCD所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com