精英家教网 > 高中数学 > 题目详情
如图所示,已知△ABC中,AD是BC边上的中线,E是AD的中点,BE的延长线交AC于点F,则AF:AC=
1:3
1:3
分析:作CF中点G,连接DG,由于D、G是BC、CF中点,所以DG是△CBF的中位线,在△ADG中利用三角形中位线定理可求AF=FG,同理在△CBF中,也有CG=FG,那么有AF=
1
3
AC,即可求出AF与AC的比.
解答:解:作CF的中点G,连接DG,则FG=GC,
又∵BD=DC,
∴DG∥BF,
∴AE:ED=AF:FG,
∵AE=ED,
∴AF=FG,
∴AF:AC=1:3.
故答案为:1:3
点评:构造中位线是常用的辅助线方法.本题考查了三角形的中位线的性质:三角形的中位线平行于第三边;及一组平行线在一条直线上截得的线段相等,在其他直线上截得的线段也相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、如图所示,已知AB⊥平面BCD,BC⊥CD,则图中互相垂直的平面有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知AB⊥平面BCD,M、N分别是AC、AD的中点,BC⊥CD.
(1)求证:MN∥平面BCD;
(2)求证:平面BCD⊥平面ABC;
(3)若AB=1,BC=
3
,求直线AC与平面BCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

A:如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于点D,BC=4cm,
(1)试判断OD与AC的关系;
(2)求OD的长;
(3)若2sinA-1=0,求⊙O的直径.
B:(选修4-4)已知直线l经过点P(1,1),倾斜角α=
4

(1)写出直线l的参数方程;
(2)设l与圆x2+y2=4相交于两点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

一次机器人足球比赛中,甲队1号机器人由点A开始作匀速直线运动,到达点B时,发现足球在点D处正以2倍于自己的速度向点A作匀速直线滚动.如图所示,已知AB=4
2
dm,AD=17dm,∠BAC=45°
.若忽略机器人原地旋转所需的时间,则该机器人最快可在何处截住足球?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知
AB
=2
BC
OA
=
a
OB
=
b
OC
=
c
,则
c
=
 
.(用
a
b
表示)

查看答案和解析>>

同步练习册答案