【题目】已知(为自然对数的底数),.
(1)当时,求函数的极小值;
(2)当时,关于的方程有且只有一个实数解,求实数的取值范围.
【答案】(1)见解析;(2)见解析
【解析】
(1)由题意,当时,然后求导函数,分析单调性求得极值;
(2)先将原方程化简,然后换元转化成只有一个零点,再对函数进行求导,讨论单调性,利用零点存在性定理求得a的取值.
(1)当时,令解得
递减 | 极小值 | 递增 |
(2)设,
令,,
,设,,
由得,
,在单调递增,
即在单调递增,,
①当,即时,时,,在单调递增,又,
此时在当时,关于的方程有且只有一个实数解.
②当,即时,
,又
故,当时,,单调递减,又,
故当时,,
在内,关于的方程有一个实数解.
又时,,单调递增,
且,令,
,,故在单调递增,又
故在单调递增,故,故,又,由零点存在定理可知,.
故当时,的方程有两个解为和
综上所述:当时的方程有且只有一个实数解
科目:高中数学 来源: 题型:
【题目】某少数民族的刺绣有着悠久的历史,如图4①,②,③,④为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(1)求出f(5)的值;
(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;
(3)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为=(>0),过点的直线的参数方程为(t为参数),直线与曲线C相交于A,B两点.
(Ⅰ)写出曲线C的直角坐标方程和直线的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过抛物线的焦点的直线与抛物线交于两点,且,抛物线的准线与轴交于,于点,且四边形的面积为,过的直线交抛物线于两点,且,点为线段的垂直平分线与轴的交点,则点的横坐标的取值范围为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中,四边形为菱形,,平面平面,在线段上移动,为棱的中点.
(1)若为线段的中点,为中点,延长交于,求证:平面;
(2)若二面角的平面角的余弦值为,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的茎叶图记录了华润万家在渭南城区甲、乙连锁店四天内销售情况的某项指标统计:
(I)求甲、乙连锁店这项指标的方差,并比较甲、乙该项指标的稳定性;
(Ⅱ)每次都从甲、乙两店统计数据中随机各选一个进行比对分析,共选了3次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为,求的分布列及数学期望
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com