精英家教网 > 高中数学 > 题目详情
7.已知扇形OAB的圆心角为4,其面积是2cm2则该扇形的周长是(  )
A.8cmB.6cmC.4cmD.2cm

分析 利用已知条件求出扇形的半径,即可得解周长.

解答 解:设扇形的半径r,扇形OAB的圆心角为4弧度,弧长为:4r,
其面积为2cm2
可得$\frac{1}{2}×4r×r$=2,解得r=1.
扇形的周长:1+1+4=6cm.
故选:B.

点评 本题考查扇形的面积公式的应用,考查计算能力,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若方程x2-2x+m=0与-2x2+4x+n=0的4个不同的根可以组成一个等差数列,且首项为$\frac{1}{4}$,则mn的值为-$\frac{105}{128}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.实数x,y满足不等式组$\left\{{\begin{array}{l}{(x-y-1)(2x+y-5)≥0}\\{0≤x≤2}\end{array}}\right.$则$t=\frac{{|{x+y}|}}{x+1}$的取值范围是[0,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解关于x的不等式:$\frac{a+1}{x-a}$>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=lg(4x-x2)的单调递减区间为[2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法中,正确的序号为(  )
(1)$\overrightarrow{AB}$+$\overrightarrow{MB}$+$\overrightarrow{BC}$+$\overrightarrow{OM}$+$\overrightarrow{CO}$=$\overrightarrow{AB}$;
(2)若$\overrightarrow{a}$•$\overrightarrow{b}$<0,则$\overrightarrow a$与$\overrightarrow b$的夹角是钝角;
(3)若向量$\overrightarrow{{e}_{1}}$=(2,-3),$\overrightarrow{{e}_{2}}$=($\frac{1}{2}$,-$\frac{3}{4}$)能作为平面内所有向量的一组基底
(4)若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow a$在$\overrightarrow{b}$上的投影为|$\overrightarrow{a}$|.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)为二次函数,其导函数f′(x)满足f′(x)lnx<$\frac{f(x)}{x}$,则有(  )
A.f(2)<f(e)ln2,2f(e)>f(e2B.f(2)<f(e)ln2,2f(e)<f(e2
C.f(2)>f(e)ln2,2f(e)<f(e2D.f(2)>f(e)ln2,2f(e)>f(e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x=log23-log2$\sqrt{3}$,y=log0.53,z=0.9-1.1,则(  )
A.x<y<zB.z<y<xC.y<z<xD.y<x<z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数中,既是偶函数,又在区间(0,+∞)上是增函数的是(  )
A.y=$\frac{1}{x}$B.y=x+3C.y=-x2+4D.y=|x|

查看答案和解析>>

同步练习册答案