精英家教网 > 高中数学 > 题目详情
已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x
(1)求f(x)的解析式;
(2)若A={x|x2-4x+3=0},B={x|f(x)=ax}且A∩B=B,求a的取值范围.
考点:函数解析式的求解及常用方法,交集及其运算
专题:函数的性质及应用
分析:(1)设f(x)=ax2+bx+c,由f(0)=1,f(x+1)-f(x)=2x,求出a,b,c的值即可;
(2)先求出A={1,3},B={x|x2-(a+1)x+1=0},由A∩B=B,只需△≤0,解出a的范围,代入检验即可.
解答: 解:(1)设f(x)=ax2+bx+c
∵f(0)=1,∴c=1
∴f(x+1)-f(x)
=a(x+1)2+b(x+1)+c-ax2-bx-c
=2ax+b+1
=2x
∴2a=2,b+1=0
∴a=1,b=-1,
∴f(x)=x2-x+1;
(2)∵A={x|x2-4x+3=0}={1,3},
B={x|f(x)=ax}={x|x2-(a+1)x+1=0},
∵A∩B=B,
∴对于x2-(a+1)x+1=0,
只需△=(a+1)2-4≤0,
解得:-3≤a≤1,
当a=-3时,B={-1},不合题意,舍,
∴a的取值范围是:(-3,1].
点评:本题考查了求函数的解析式,集合的运算,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等边△ABC的两个顶点A(0,0),B(4,0),且第三个顶点在第四象限,则BC边所在的直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2x
x+1
在[1,2]的最大值和最小值分别是(  )
A、
4
3
,1
B、1,0
C、
4
3
2
3
D、1,
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域在R上的偶函数f(x)在(-∞,0)上是增函数,若f(2a2+a+1)<f(3a2-2a+1),则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和Sn,满足Sn=
1
8
(an+2)2,求an

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是函数f(x)=x2+ax+b的部分图象,则函数g(x)=lnx+2x+a的零点所在的区间是(  )
A、(
1
4
1
2
B、(1,2)
C、(
1
2
,1)
D、(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

两条直线2x-y+k=0和4x-2y+1=0的位置关系是(  )
A、平行B、相交
C、重合D、平行或重合

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①“若x2+x-6≥0,则x>2”的否命题是真命题;
②命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
③在△ABC中,“A>30°”是“sinA>
1
2
”的充分不必要条件;
④命题p:“α=β”命题q:“tanα=tanβ”,则p是q的既不充分也不必要条件;
⑤命题p:函数y=ln[(1-x)(1+x)]为偶函数,命题q:函数y=ln
1-x
1+x
是奇函数,则p∧(?q)是假命题.
其中真命题的序号是
 
(把真命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数:
(1)y=log5(6-3x);
(2)f(x)=3xsinx-
cosx-lnx
x

查看答案和解析>>

同步练习册答案