精英家教网 > 高中数学 > 题目详情
15.在底面是菱形的四棱锥P-ABCD中,PA⊥底面ABCD,∠BAD=120°,点E为棱PB的中点,点F在棱AD上,平面CEF与PA交于点K,且PA=AB=3,AF=2,则点K到平面PBD的距离为$\frac{9\sqrt{5}}{25}$.

分析 如图所示,以AP为z轴,AD为y轴,取BC的中点M,以AM为x轴,建立空间直角坐标系.设K(0,0,m),则$\overrightarrow{CK}$=$a\overrightarrow{CE}$+b$\overrightarrow{CF}$,可得K坐标.设平面PBD的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BD}=0}\\{\overrightarrow{n}•\overrightarrow{PD}=0}\end{array}\right.$,利用点K到平面PBD的距离d=$\frac{|\overrightarrow{n}•\overrightarrow{KP}|}{|\overrightarrow{n}|}$即可得出.

解答 解:如图所示,
以AP为z轴,AD为y轴,取BC的中点M,以AM为x轴,建立空间直角坐标系.则A(0,0,0),P(0,0,3),D(0,3,0),F(0,2,0),B($\frac{3\sqrt{3}}{2}$,-$\frac{3}{2}$,0),C($\frac{3\sqrt{3}}{2}$,$\frac{3}{2}$,0),E($\frac{3\sqrt{3}}{4}$,-$\frac{3}{4}$,$\frac{3}{2}$),
设K(0,0,m),则$\overrightarrow{CK}$=$a\overrightarrow{CE}$+b$\overrightarrow{CF}$,
∴(0,0,m)=$(\frac{3\sqrt{3}}{2}-\frac{3\sqrt{3}a}{4}-\frac{3\sqrt{3}b}{2},\frac{3}{2}-\frac{9}{4}a+\frac{1}{2}b,\frac{3}{2}a)$,
∴$\frac{3\sqrt{3}}{2}-\frac{3\sqrt{3}}{4}$a-$\frac{3\sqrt{3}}{2}$b=0,$\frac{3}{2}-\frac{9}{4}a+\frac{1}{2}b$=0,$\frac{3}{2}$a=m,
解得m=$\frac{6}{5}$,a=$\frac{4}{5}$,b=$\frac{3}{5}$.
$\overrightarrow{BD}$=$(-\frac{3\sqrt{3}}{2},\frac{9}{2},0)$,$\overrightarrow{PD}$=(0,3,-3).
设平面PBD的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BD}=0}\\{\overrightarrow{n}•\overrightarrow{PD}=0}\end{array}\right.$,$\left\{\begin{array}{l}{-\frac{3\sqrt{3}}{2}x+\frac{9}{2}y=0}\\{3y-3z=0}\end{array}\right.$,
取$\overrightarrow{n}$=($\sqrt{3}$,1,1).
$\overrightarrow{KP}$=$(0,0,\frac{9}{5})$.
∴点K到平面PBD的距离d=$\frac{|\overrightarrow{n}•\overrightarrow{KP}|}{|\overrightarrow{n}|}$=$\frac{\frac{9}{5}}{\sqrt{5}}$=$\frac{9\sqrt{5}}{25}$.
故答案为:$\frac{9\sqrt{5}}{25}$.

点评 本题考查了空间位置关系、平面向量基本定理、法向量的应用、点到平面的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届湖南衡阳县四中高三9月月考数学(文)试卷(解析版) 题型:填空题

已知是定义在上的奇函数,当时,,函数,如果对于,使得,则实数的取值范围是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线C:y2=2px(p>0)以x=-2为准线方程,过x轴上一定点P(3,0)作直线l与抛物线交于不同的两点A、B
(1)求抛物线C的标准方程;
(2)求弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在实数集R上的函数f(x)满足f(x+1)=$\frac{1}{2}$+$\sqrt{f(x)-{f}^{2}(x)}$,则f(0)+f(2017)的最大值为(  )
A.1-$\frac{\sqrt{2}}{2}$B.1+$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在矩形ABCD中,AB=4,BC=6,四边形AEFG为边长为2的正方形,现将矩形ABCD沿过点的动直线l翻折的点C在平面AEFG上的射影C1落在直线AB上,若点C在抓痕l上的射影为C2,则$\frac{{C}_{1}{C}_{2}}{C{C}_{2}}$的最小值为(  )
A.6$\sqrt{5}$-13B.$\sqrt{5}$-2C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=a(x-2)ex+lnx+$\frac{1}{x}$存在唯一的极值点,且此极值大于0,则(  )
A.0≤a<$\frac{1}{e}$B.0≤a<$\frac{1}{{e}^{2}}$C.-$\frac{1}{e}$<a<$\frac{1}{{e}^{2}}$D.0≤a<$\frac{1}{e}$或a=-$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=2,|$\overrightarrow{a}$-$\overrightarrow{b}$|=3,则|$\overrightarrow{a}$|•|$\overrightarrow{b}$|的取值范围是[$\frac{5}{4}$,$\frac{13}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点M(x,y)是平面直角坐标系中的动点,若A(-4,0),B(-1,0),且△ABM中|MA|=2|MB|.
(Ⅰ) 求点M的轨迹C的方程及求△ABM的周长的取值范围;
(Ⅱ) 直线MB与轨迹C的另一交点为M',求$\frac{{S}_{△AMB}}{{S}_{△{AM}^{′}B}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱柱ABC-A1B1C1中,AB⊥平面BCC1B1,$∠BC{C_1}=\frac{π}{3},AB=B{B_1}=2,BC=1,D$为CC1的中点.
(1)求证:DB1⊥平面ABD;
(2)求点A1到平面ADB1的距离.

查看答案和解析>>

同步练习册答案