精英家教网 > 高中数学 > 题目详情
4.已知点M(x,y)是平面直角坐标系中的动点,若A(-4,0),B(-1,0),且△ABM中|MA|=2|MB|.
(Ⅰ) 求点M的轨迹C的方程及求△ABM的周长的取值范围;
(Ⅱ) 直线MB与轨迹C的另一交点为M',求$\frac{{S}_{△AMB}}{{S}_{△{AM}^{′}B}}$的取值范围.

分析 (Ⅰ) 利用直接法点M的轨迹C的方程;利用特殊位置,即可求△ABM的周长的取值范围;
(Ⅱ) 直线MB与轨迹C的另一交点为M',$\frac{{S}_{△AMB}}{{S}_{△{AM}^{′}B}}$=|$\frac{{y}_{1}}{{y}_{2}}$|=t,利用韦达定理,即可求$\frac{{S}_{△AMB}}{{S}_{△{AM}^{′}B}}$的取值范围.

解答 解:(Ⅰ)设M(x,y),则由题意可得(x+4)2+y2=4(x+1)2+4y2
化简可得x2+y2=4.
当M在(-2,0)时,|MA|+|MB|=3,M在(2,0)时,|MA|+|MB|=9,
∴△ABM的周长的取值范围是(6,12);
(Ⅱ) 设直线MB的方程为x=my-1,代入x2+y2=4,整理可得(m2+1)y2-2my-3=0,
设M(x1,y1),M′(x2,y2),则y1+y2=$\frac{2m}{{m}^{2}+1}$,y1y2=-$\frac{3}{{m}^{2}+1}$
$\frac{{S}_{△AMB}}{{S}_{△{AM}^{′}B}}$=|$\frac{{y}_{1}}{{y}_{2}}$|=t,则y1=-ty2
联立3个方程可得$\frac{t}{(1-t)^{2}}$=$\frac{3}{4}$(1+$\frac{1}{{m}^{2}}$),
∴$\frac{t}{(1-t)^{2}}$>$\frac{3}{4}$,解得$\frac{1}{3}<t<3$,
∴$\frac{{S}_{△AMB}}{{S}_{△{AM}^{′}B}}$的取值范围是($\frac{1}{3}$,3).

点评 本题考查轨迹方程,考查直线与圆的位置关系的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥P-ABCD的底面为梯形,且AB∥DC,DC=2AB,E和F分别是棱CD和PC的中点,PD⊥CD,PB=BC=BD=2$\sqrt{3}$,AB=2,二面角P-AB-D为$\frac{2π}{3}$.
(1)求证:BF∥平面PAD;
(2)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在底面是菱形的四棱锥P-ABCD中,PA⊥底面ABCD,∠BAD=120°,点E为棱PB的中点,点F在棱AD上,平面CEF与PA交于点K,且PA=AB=3,AF=2,则点K到平面PBD的距离为$\frac{9\sqrt{5}}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某校640名毕业生学生,现采用系统抽样方法,抽取32人做问卷调查,将640人按1,2,…,640随机编号,则抽取的32人中,编号落入区间[161,380]的人数为(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点A,B是抛物线y2=4x上的两点,点M(3,2)是线段AB的中点,则|AB|的值为(  )
A.4B.4$\sqrt{2}$C.8D.8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\left\{\begin{array}{l}x+1,x≥0\\{x^2},x<0\end{array}\right.$,则f[f(-1)]=(  )
A.0B.1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.下列说法:
①正切函数y=tanx在定义域内是增函数;
②函数$f(x)=cos(\frac{2}{3}x+\frac{π}{2})$是奇函数;
③$x=\frac{π}{8}$是函数$f(x)=sin(2x+\frac{5π}{4})$的一条对称轴方程;
④扇形的周长为8cm,面积为4cm2,则扇形的圆心角为2rad;
⑤若α是第三象限角,则$\frac{{|{sin\frac{α}{2}}|}}{{sin\frac{α}{2}}}+\frac{{|{cos\frac{α}{2}}|}}{{cos\frac{α}{2}}}$取值的集合为{-2,0},
其中正确的是②③④.(写出所有正确答案的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x3+3x(x∈R),若不等式f(2m+mt2)+f(4t)<0对任意实数t≥1恒成立,则实数m的取值范围是(  )
A.$({-∞,-\sqrt{2}})∪({\sqrt{2},+∞})$B.$({-∞,-\frac{{\sqrt{2}}}{2}})$C.$({-2,-\sqrt{2}})$D.$({-∞,-\sqrt{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q是AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上且满足PC=3PM,求二面角M-BQ-C的大小.

查看答案和解析>>

同步练习册答案