精英家教网 > 高中数学 > 题目详情
13.已知直线l1:(k-3)x+(3-k)y+1=0与l2:2(k-3)x-2y+3=0垂直,则k的值是(  )
A.2或3B.3C.2D.2或-3

分析 对k分类讨论,利用利用两条直线相互垂直的条件即可得出.

解答 解:k=3时,直线l1:(k-3)x+(3-k)y+1=0化为:1=0,舍去.
k≠3时,由两条直线相互垂直可得:-$\frac{k-3}{3-k}$×$(-\frac{2(k-3)}{-2})$=-1,解得k=2.
故选:C.

点评 本题考查了两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设集合A={-1,0,1},B={x|x2-2x-3<0},则A∩B=(  )
A.{-1,0,1}B.{0,1}C.(-1,1)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.偶函数y=f(x),x∈R,当x<0时,y=f(x)是增函数,若|x1|<|x2|,且x1<0,x2>0.(  )
A.f(-x1)>f(-x2B.f(-x1)<f(-x2C.f(-x1)=f(-x2D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\vec m$=($\sqrt{3}$sinx,sinx),$\vec n$=(cosx,sinx).
(1)若$\vec m∥\vec n$且$x∈[{0,\frac{π}{2}}]$,求角x;
(2)若f(x)=$\overrightarrow m•\overrightarrow n$,函数g(x)=f(x+$\frac{π}{12}$),求函数g(x)的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛掷两枚骰子一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为X,则“X≥5”表示的实验结果(  )
A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点
C.第一枚1点,第二枚6点D.第一枚6点,第二枚1点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ln(x+a)+ax(a∈R).
(1)当a=-1时,求函数y=f(x)的极值;
(2)讨论函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.(3+x)(1-2x)5展开式中,x2项的系数为(  )
A.-150B.70C.90D.110

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法正确的是(  )
A.在统计学中,回归分析是检验两个分类变量是否有关系的一种统计方法
B.线性回归方程对应的直线$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$至少经过其样本数据点(x1,y1),(x2,y2),(x3,y3),(xn,yn)中的一个点
C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高
D.在回归分析中,相关指数R2为0.98的模型比相关指数R2为0.80的模型拟合的效果差

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解关于x的不等式 $x-\frac{1}{x}$≥a(x-1).(a∈R)

查看答案和解析>>

同步练习册答案