精英家教网 > 高中数学 > 题目详情
12.已知函数$f(x)=\frac{{\sqrt{2}}}{2}sin({2x+\frac{π}{4}})+2$,试求:
(1)函数f(x)的最小正周期及x为何值时f(x)有最大值;
(2)函数f(x)的单调递增区间;
(3)若方程f(x)-m+1=0在$x∈[{0,\frac{π}{2}}]$上有解,求实数m的取值范围.

分析 (1)由正弦函数图象的周期求法和最值的求法解答;
(2)由正弦函数的单调区间解答;
(3)由题意可得函数f(x)的图象和直线y=m-1在x∈[0,$\frac{π}{2}$]上有交点,根据正弦函数的定义域和值域求出f(x)的值域,可得m的范围.

解答 解:(1)$T=\frac{2π}{|w|}=\frac{2π}{2}=π$.
令$2x+\frac{π}{4}=\frac{π}{2}+2kπ(k∈Z)$,
解得$x=\frac{π}{8}+kπ(k∈Z)$,
即$x=\frac{π}{8}+kπ(k∈Z)$时,f(x)有最大值.
(2)令$-\frac{π}{2}+2kπ≤2x+\frac{π}{4}≤\frac{π}{2}+2kπ(k∈Z)$,
∴$-\frac{3π}{8}+kπ≤x≤\frac{π}{8}+kπ(k∈Z)$,
∴函数f(x)的单调增区间为 $[-\frac{3π}{8}+kπ,\frac{π}{8}+kπ](k∈Z)$.)
(3)方程f(x)-m+1=0在$x∈[0,\frac{π}{2}]$上有解,等价于两个函数y=f(x)与y=m-1的图象有交点.                            
∵$x∈[0,\frac{π}{2}]$,
∴$2x+\frac{π}{4}∈[\frac{π}{4},\frac{5π}{4}]$,
∴$-\frac{{\sqrt{2}}}{2}≤sin(2x+\frac{π}{4})≤1$,
即得$\frac{3}{2}≤f(x)≤2+\frac{{\sqrt{2}}}{2}$,
∴$\frac{3}{2}≤m-1≤2+\frac{{\sqrt{2}}}{2}$,
∴m的取值范围为$[\frac{5}{2},3+\frac{{\sqrt{2}}}{2}]$.

点评 本题主要考查正弦函数的最小正周期、正弦函数的图象的对称性、单调性,正弦函数的定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知f(x)=x2+3x+1,g(x)=$\frac{a-1}{x-1}$+x,若h(x)=f(x)-g(x)恰有两个零点,则实数a的取值为(  )
A.1B.$-\frac{5}{27}$C.1或$-\frac{5}{27}$D.$[{-\frac{5}{27},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数h(x)=lnx,m(x)=a(x-1).
(Ⅰ)已知过原点的直线l与h(x)=lnx相切,求直线l的斜率k;
(Ⅱ)求函数f(x)=h(x)-m(x)的单调区间;
(Ⅲ)当x∈[1,+∞)时,有m(x)≥$\frac{x}{x+1}$h(x)恒成立,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知m,n是两条不重合的直线,α、β、γ是三个两两不重合的平面,下列结论正确的是(  )
(1)若m∥n,n∥β,且m?α,n?α,则α∥β
(2)若α∩β=n,m∥n,则m∥α,m∥β
(3)若α∥γ,β∥γ,则α∥β
(4)若α∥β,且γ∩α=m,γ∩β=n,则m∥n.
A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=(x2-3x+3)•ex,若函数f(x)在[t,t+2]上为单调函数;则t的取值范围为(  )
A.(-∞,0)B.(1,+∞)C.(-∞,-2]∪[1,+∞)D.(-3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2|x-1|+|x-3|
(1)将函数f(x)改写成分段函数的形式;
(2)画出该函数的图象;
(3)根据图象指出函数的单调区间并说明单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点P在以F1、F2为焦点的双曲线上,且$\overrightarrow{P{F_2}}•\overrightarrow{{F_1}{F_2}}=0,∠P{F_1}{F_2}={30°}$,则双曲线的离心率(  )
A.$1+\sqrt{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(cosα,1),$\overrightarrow{b}$=(2,-sinα),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则tan(2α-$\frac{π}{4}$)=(  )
A.-$\frac{1}{3}$B.-3C.$\frac{1}{3}$D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.抛物线y=$\frac{1}{8}{x^2}$的准线方程是(  )
A.x=-2B.x=-4C.y=-2D.y=-4

查看答案和解析>>

同步练习册答案