精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点分别为F1,F2,离心率为
2
2
,且过点(2,
2
)

(1)求椭圆C的标准方程;
(2)过点F1作直线l1与椭圆交于M,N两点,过点F2作直线l2与椭圆交于P,Q两点,且直线l1,l2互相垂直,试问
1
|MN|
+
1
|PQ|
是否为定值?如果是,求出该定值;如果不是,求出其取值范围.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)根据椭圆的离心率为
2
2
,且过点(2,
2
)
,建立方程组,求出a,b,即可求椭圆C的标准方程;
(2)分类讨论,设出直线l1,l2的方程,代入椭圆方程,利用弦长公式,求出|MN|=
4
2
(1+k2)
1+2k2
|PQ|=
4
2
(1+k2)
2+k2
,代入
1
|MN|
+
1
|PQ|
,化简,即可得出结论.
解答: 解:(1)∵椭圆的离心率为
2
2
,且过点(2,
2
)

a2-b2
a
=
2
2
4
a2
+
2
b2
=1

∴a=2
2
,b=2,
∴椭圆C的标准方程为
x2
8
+
y2
4
=1
-----------------(3分)
(2)设l1:y=k(x+2),则l2:y=-
1
k
(x-2)

y=k(x+2)
x2
8
+
y2
4
=1
,消去y得(1+2k2)x2+8k2x+8k2-8=0
所以|MN|=
4
2
(1+k2)
1+2k2

同理|PQ|=
4
2
(1+k2)
2+k2

所以,
1
|MN|
+
1
|PQ|
=
1+2k2
4
2
(1+k2)
+
2+k2
4
2
(1+k2)
=
3(1+k2)
4
2
(1+k2)
=
3
2
8
-----------------(8分)
当l1斜率不存在时,|MN|=4
2
,|PQ|=2
2
,符合
1
|MN|
+
1
|PQ|
=
3
2
8

当l2斜率不存在时,|MN|=2
2
,|PQ|=4
2
,符合
1
|MN|
+
1
|PQ|
=
3
2
8

综上,
1
|MN|
+
1
|PQ|
=
3
2
8
-----------------(10分)
点评:本题考查椭圆的方程,考查直线与椭圆的位置关系,考查弦长公式,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,对任意的k∈N*,a2k-1、a2k、a2k+1成等比数列,公比为qk;a2k、a2k+1、a2k+2成等差数列,公差为dk,且d1=2.
(1)写出数列{an}的前四项;
(2)设bk=
1
qk-1
,求数列{bk}的通项公式;
(3)求数列{dk}的前k项和Dk

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足不等式组
3x-y≤3
x+y≥1
x-y≥-1
,则z=2x+3y的最大值是(  )
A、13B、12C、11D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的程序框图,能使输入的x值与输出的y值相等的x值个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点都在抛物线y2=2px(p>0)上,且抛物线的焦点F满足
FA
+
FB
+
FC
=
0
,若BC边上的中线所在直线l的方程为mx+ny-m=0(m,n为常数且m≠0).
(Ⅰ)求p的值;
(Ⅱ)O为抛物线的顶点,△OFA、△OFB、△OFC的面积分别记为S1、S2、S3,求证:S12+S22+S32为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点P(2,-1)的直线l交椭圆
x 2
8
+
y 2
4
=1
于M、N两点,B(0,2)是椭圆的一个顶点,若线段MN的中点恰为点P.
(Ⅰ)求直线l的方程;
(Ⅱ)求△BMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在10名演员中,5人能歌,8人善舞,从中选出5人,使这5人能演出一个由1人独唱4人伴舞的节目,共有几种选法?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为y=
1
2p
x2
,焦点F(0,1).直线y=2与抛物线C交于M,N两点A,B在抛物线C上.
(1)求抛物线C的方程;
(2)若∠BMN=∠AMN,求证:直线AB的斜率为定值;
(3)若直线AB的斜率为
2
,且点N到直线MA,MB的距离的和为8,试判断△MAB的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在椭圆
x2
4
+y2
=1中,F1、F2为椭圆的左右焦点,过F1和F2分别作直线F1A和F2B,使得F1A∥F2B,连接F2A和F1B,两直线交于点P,证明:PF1+PF2的定值.

查看答案和解析>>

同步练习册答案