精英家教网 > 高中数学 > 题目详情
19.设0≤α≤π,不等式8x2-(8sinα)x+cos2α≥0对任意x∈R恒成立,求α的取值范围.

分析 将不等式看成二次函数恒成立问题,利用二次函数≥0对一切x∈R恒成立,可得△≤0,转化成三角函数问题,即可求解实数α的取值范围.

解答 解:由题意:不等式8x2-(8sinα)x+cos2α≥0对任意x∈R恒成立,
由二次函数的性质可得:△≤0,
即:(8sinα)2-4×8×cos2α≤0
整理得:4sin2α≤1,
∴$-\frac{1}{2}≤sinα≤\frac{1}{2}$
∵0≤α≤π,
∴$0≤α≤\frac{π}{6}$或$\frac{5π}{6}≤α≤π$.
所以α的取值范围是[0,$\frac{π}{6}$]∪[$\frac{5π}{6}$,π].

点评 本题主要考查了函数恒成立问题的求解,利用了二次函数数的性质转化成三角函数的问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{3}+3{x}^{2},0≤x<k}\\{lo{g}_{2}x+1,k≤x≤a}\end{array}\right.$,若存在k使得函数f(x)的值域为[0,2],则实数a的取值范围是{2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在数列{an}中,a1=-1,a2=2,且满足an+1=an+an+2,则a2016=(  )
A.-3B.-2C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A、B、C所对的边分别是a,b,c,且a,b,c既是等比数列又是等差数列,则角B的余弦值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,已知acosB=bcosA,那么△ABC一定是(  )
A.等腰三角形B.直角三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a>b>0,则a2+$\frac{1}{ab}$+$\frac{1}{{a({a-b})}}$的最小值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在数列{an}中,若a1=-2,且对任意的n∈N*有2an+1=1+2an,则数列{an}前10项的和为(  )
A.2B.10C.$\frac{5}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.记函数f(x)=$\frac{2x}{x-2}$在区间[3,4]上的最大值和最小值分别为M、m,则$\frac{{m}^{2}}{M}$的值为(  )
A.$\frac{2}{3}$B.$\frac{3}{8}$C.$\frac{3}{2}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.△ABC中,角A,B,C的对边分别为a,b,c,若满足c=$\sqrt{2}$,a2+b2=c2+$\sqrt{2}$ab的△ABC有两个,则边长BC的取值范围是(  )
A.$(1,\sqrt{2})$B.$(1,\sqrt{3})$C.$(\sqrt{2},2)$D.$(\sqrt{3},2)$

查看答案和解析>>

同步练习册答案