精英家教网 > 高中数学 > 题目详情
(2012•安徽)设函数f(x)=
x2
+sinx的所有正的极小值点从小到大排成的数列为{xn}.
(Ⅰ)求数列{xn}.
(Ⅱ)设{xn}的前n项和为Sn,求sinSn
分析:(Ⅰ)求导函数,令f′(x)>0,确定函数的单调增区间;令f′(x)<0,确定函数的单调减区间,从而可得f(x)的极小值点,由此可得数列{xn};
(Ⅱ)Sn=x1+x2+…+xn=2π(1+2+…+n)-
2nπ
3
=n(n+1)π-
2nπ
3
,再分类讨论,求sinSn
解答:解:(Ⅰ)求导函数可得f′(x)=
1
2
+cosx
,令f′(x)=0,可得x=2kπ±
2
3
π(k∈Z)

令f′(x)>0,可得2kπ-
2
3
π<x<2kπ+
2
3
π(k∈Z)

令f′(x)<0,可得2kπ+
2
3
π<x<2kπ+
4
3
π(k∈Z)

x=2kπ-
2
3
π(k∈Z)
时,f(x)取得极小值
∴xn=x=2nπ-
2
3
π(n∈N+)

(Ⅱ)Sn=x1+x2+…+xn=2π(1+2+…+n)-
2nπ
3
=n(n+1)π-
2nπ
3

∴当n=3k(k∈N*)时,sinSn=sin(-2kπ)=0;
当n=3k-1(k∈N*)时,sinSn=sin
3
=
3
2

当n=3k-2(k∈N*)时,sinSn=sin
3
=-
3
2
点评:本题考查导数知识的运用,考查函数的单调性与极值,考查函数与数列之间的综合,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽)设集合A={x|-3≤2x-1≤3},集合B为函数y=lg(x-1)的定义域,则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.
(Ⅰ)求角A的大小;
(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽)设向量
a
=(1,2m),
b
=(m+1,1),
c
=(2,m),若(
a
+
c
)⊥
b
,则|
a
|=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽)设平面α与平面β相交于直线m,直线a在平面α内.直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的(  )

查看答案和解析>>

同步练习册答案