如图,四棱锥P—ABCD中,底面ABCD是边长为
的正方形E, F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=
AD.
![]()
(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积.
(1)对于线面平行的证明,主要是根据线面平行的判定定理,根据EF//PA,来得到证明。
(2)![]()
PM=![]()
【解析】
试题分析:解:(Ⅰ)证明:连接AC,则F是AC的中点,
E为PC的中点,故在
CPA中,EF//PA,
且PA
平面PAD,EF
平面PAD,∴EF//平面PAD
(Ⅱ)取AD的中点M,连接PM,∵PA=PD,∴PM⊥AD,又平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,∴PM⊥平面ABCD.
在直角
PAM中,求得PM=
,∴![]()
PM=![]()
考点:空间中线面平行,锥体的体积
点评:解决的关键是根据线面平行的判定定理来得到证明,同事能结合等体积法来求解几何体的体积,是常用的转换方法,属于基础题。
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
| AE |
| AP |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 3 |
| ||
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com