精英家教网 > 高中数学 > 题目详情
8.已知正项数列{an}满足:a1=$\frac{3}{2}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+3}$.
(1)证明{$\frac{1}{{a}_{n}}$}为等差数列,并求通项an
(2)若数列{bn}满足bn•an=3(1-$\frac{1}{{2}^{n}}$),求数列{bn}的前n项和.

分析 (1)由a1=$\frac{3}{2}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+3}$,两边取倒数可得:$\frac{1}{{a}_{n+1}}$=$\frac{2}{3}$+$\frac{1}{{a}_{n}}$,$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{2}{3}$,再利用等差数列的通项公式即可得出.
(2)bn•an=3(1-$\frac{1}{{2}^{n}}$),可得bn=2n-$\frac{n}{{2}^{n-1}}$.再利用“错位相减法”、等差数列与等比数列的求和公式即可得出.

解答 (1)证明:由a1=$\frac{3}{2}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+3}$,
两边取倒数可得:$\frac{1}{{a}_{n+1}}$=$\frac{2}{3}$+$\frac{1}{{a}_{n}}$,$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{2}{3}$,
∴{$\frac{1}{{a}_{n}}$}为等差数列,首项为$\frac{2}{3}$,公差为$\frac{2}{3}$.
∴$\frac{1}{{a}_{n}}$=$\frac{2}{3}$+$\frac{2}{3}$(n-1)=$\frac{2n}{3}$,
∴an=$\frac{3}{2n}$.
(2)解:∵bn•an=3(1-$\frac{1}{{2}^{n}}$),
∴$\frac{3}{2n}{b}_{n}$=3(1-$\frac{1}{{2}^{n}}$),解得bn=2n-$\frac{n}{{2}^{n-1}}$.
∴数列{bn}的前n项和=(2+4+…+2n)-$(1+\frac{2}{2}+\frac{3}{{2}^{2}}$+…+$\frac{n}{{2}^{n-1}})$.
=$\frac{n(2+2n)}{2}$-$(1+\frac{2}{2}+\frac{3}{{2}^{2}}$+…+$\frac{n}{{2}^{n-1}})$=n(n+1)-$(1+\frac{2}{2}+\frac{3}{{2}^{2}}$+…+$\frac{n}{{2}^{n-1}})$.
设Tn=$1+\frac{2}{2}$+$\frac{3}{{2}^{2}}$+…+$\frac{n}{{2}^{n-1}}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{2}{{2}^{2}}$+…+$\frac{n-1}{{2}^{n-1}}$+$\frac{n}{{2}^{n}}$,
∴$\frac{1}{2}{T}_{n}$=1+$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-$\frac{n}{{2}^{n}}$=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n}}$,
∴Tn=4$(1-\frac{1}{{2}^{n}})$-$\frac{n}{{2}^{n-1}}$.
∴数列{bn}的前n项和=n2+n-4+$\frac{2+n}{{2}^{n-1}}$.

点评 本题考查了等差数列的通项公式性质及其求和公式、数列递推关系、“错位相减法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.△ABC中,A=60°,B=45°,a=10,则b的值(  )
A.5$\sqrt{2}$B.10$\sqrt{2}$C.$\frac{10\sqrt{6}}{3}$D.5$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数g(x)=alnx,对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,则实数a的取值范围是a≤-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)($\frac{9}{4}$)${\;}^{\frac{1}{2}}}$-(-2009)0-($\frac{8}{27}$)${\;}^{\frac{2}{3}}}$+($\frac{3}{2}$)-2
(2)log25625+lg 0.001+ln$\sqrt{e}$+${2^{-1+{{log}_2}3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.椭圆短轴的一个端点是(3,0),焦距为4,该椭圆的方程是$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=lg(ax-1)-lg(x-1)在区间[2,+∞)上是增函数,则a的取值范围是$\frac{1}{2}$<a<!.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列图象中可作为函数y=f(x)图象的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,且a1=a(a∈R),an+1=$\left\{\begin{array}{l}{a_n-3,a_n>3}\\{2a_n,a_n≤3}\end{array}\right.$,n∈N*
(1)若0<an≤6,求证:0<an+1≤6;
(2)若a=5,求S2016
(3)若a=$\frac{3}{2^m-1}$(m∈N*),求S4m+2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知定义在R上的函数f(x),满足对任意的x,y∈R,都有f(x+y)=f(x)+f(y).当x>0时,f(x)<0.且f(3)=-4.
(Ⅰ)求f(0)的值;
(Ⅱ)判断并证明函数f(x)在R上的奇偶性;
(Ⅲ)在区间[-9,9]上,求f(x)的最值.

查看答案和解析>>

同步练习册答案