分析 (1)分当an∈(0,3]时和当an∈(3,6]时,分别求出an+1的范围,得到要证的不等式.
(2)根据递推公式得到,数列{an}5,2,4,1,2,4,1,2,4,1,…,从2项起,以3为周期的数列,即可求出答案.
(3)通过解不等式判断出项的取值范围,从而判断出项之间的关系,选择合适的求和方法求出和.
解答 解:(1)当an∈(0,3]时,则an+1=2an∈(0,6],
当an∈(3,6]时,则an+1=an-3∈(0,3],
故an+1∈(0,6],
所以当0<an≤6时,总有0<an+1≤6.
(2)a1=a=5时,a2=a1-3=2,a3=2a2=4,a4=a3-3=1,a5=2a4=2,a6=2a5=4,a7=a6-3=1,
∴数列{an}5,2,4,1,2,4,1,2,4,1,…,
∴从2项起,以3为周期的数列,其和为2+4+1=7,
∴S2016=5+7×671+2+4=4708
(3)由m∈N*,可得2m-1≥1,故a=$\frac{3}{2^m-1}$≤3,
当1<k≤m时,2k-1a≤$\frac{3×{2}^{m-1}}{{2}^{m-1}}$=$\frac{3×{2}^{m-1}}{{2}^{m-1}+{2}^{m-1}-1}$<$\frac{3×{2}^{m-1}}{{2}^{m-1}}$=3.
故ak=2k-1a且am+1=2ma.又am+1=$\frac{3×{2}^{m}}{{2}^{m}-1}$>3,
所以am+2=am+1-3=2ma-3=2m•$\frac{3}{{2}^{m}-1}$-3=a.
故S4m+2=S4(m+1)-a4m+3-a4m+4=4(a1+a2+•…+am+1)-(2m-1+2m)a
=4(1+2+…+2m)a-3×2m-1a=4(2m+1-1)a-3×2m-1a
=(2m+3-3-3×2m-1)a=$\frac{39×{2}^{m-1}-12}{{2}^{m}-1}$.
点评 本题考查了数列的递推公式和数列的求和公式,培养了学生的运算能力和转化能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 16 | 17 | 18 | 19 |
| y | 50 | 34 | 41 | 31 |
| A. | 26个 | B. | 27个 | C. | 28个 | D. | 29个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,3) | B. | (4,7) | C. | (3,5) | D. | (0.5,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f(x)=-\frac{1}{x}$ | B. | f(x)=2x-1 | C. | $f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$ | D. | f(x)=-x3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | -3 | C. | 3或-3 | D. | $\sqrt{7}$或-$\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com